This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ecss.1 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| Assertion | ecss | ⊢ ( 𝜑 → [ 𝐴 ] 𝑅 ⊆ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecss.1 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| 2 | df-ec | ⊢ [ 𝐴 ] 𝑅 = ( 𝑅 “ { 𝐴 } ) | |
| 3 | imassrn | ⊢ ( 𝑅 “ { 𝐴 } ) ⊆ ran 𝑅 | |
| 4 | 2 3 | eqsstri | ⊢ [ 𝐴 ] 𝑅 ⊆ ran 𝑅 |
| 5 | errn | ⊢ ( 𝑅 Er 𝑋 → ran 𝑅 = 𝑋 ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → ran 𝑅 = 𝑋 ) |
| 7 | 4 6 | sseqtrid | ⊢ ( 𝜑 → [ 𝐴 ] 𝑅 ⊆ 𝑋 ) |