This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ecelqsi.1 | ⊢ 𝑅 ∈ V | |
| Assertion | ecelqsi | ⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecelqsi.1 | ⊢ 𝑅 ∈ V | |
| 2 | ecelqsw | ⊢ ( ( 𝑅 ∈ V ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |