This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vitali.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } | |
| Assertion | vitalilem1 | ⊢ ∼ Er ( 0 [,] 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vitali.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } | |
| 2 | 1 | relopabiv | ⊢ Rel ∼ |
| 3 | simplr | ⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → 𝑣 ∈ ( 0 [,] 1 ) ) | |
| 4 | simpll | ⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → 𝑢 ∈ ( 0 [,] 1 ) ) | |
| 5 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 6 | 5 | sseli | ⊢ ( 𝑢 ∈ ( 0 [,] 1 ) → 𝑢 ∈ ℝ ) |
| 7 | 6 | recnd | ⊢ ( 𝑢 ∈ ( 0 [,] 1 ) → 𝑢 ∈ ℂ ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → 𝑢 ∈ ℂ ) |
| 9 | 5 | sseli | ⊢ ( 𝑣 ∈ ( 0 [,] 1 ) → 𝑣 ∈ ℝ ) |
| 10 | 9 | recnd | ⊢ ( 𝑣 ∈ ( 0 [,] 1 ) → 𝑣 ∈ ℂ ) |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → 𝑣 ∈ ℂ ) |
| 12 | 8 11 | negsubdi2d | ⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → - ( 𝑢 − 𝑣 ) = ( 𝑣 − 𝑢 ) ) |
| 13 | qnegcl | ⊢ ( ( 𝑢 − 𝑣 ) ∈ ℚ → - ( 𝑢 − 𝑣 ) ∈ ℚ ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → - ( 𝑢 − 𝑣 ) ∈ ℚ ) |
| 15 | 12 14 | eqeltrrd | ⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → ( 𝑣 − 𝑢 ) ∈ ℚ ) |
| 16 | 3 4 15 | jca31 | ⊢ ( ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) → ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − 𝑢 ) ∈ ℚ ) ) |
| 17 | oveq12 | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑥 − 𝑦 ) = ( 𝑢 − 𝑣 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑢 − 𝑣 ) ∈ ℚ ) ) |
| 19 | 18 1 | brab2a | ⊢ ( 𝑢 ∼ 𝑣 ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) ) |
| 20 | oveq12 | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑢 ) → ( 𝑥 − 𝑦 ) = ( 𝑣 − 𝑢 ) ) | |
| 21 | 20 | eleq1d | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑢 ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑣 − 𝑢 ) ∈ ℚ ) ) |
| 22 | 21 1 | brab2a | ⊢ ( 𝑣 ∼ 𝑢 ↔ ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − 𝑢 ) ∈ ℚ ) ) |
| 23 | 16 19 22 | 3imtr4i | ⊢ ( 𝑢 ∼ 𝑣 → 𝑣 ∼ 𝑢 ) |
| 24 | simpl | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑢 ∼ 𝑣 ) | |
| 25 | 24 19 | sylib | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑣 ) ∈ ℚ ) ) |
| 26 | 25 | simpld | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) ) |
| 27 | 26 | simpld | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑢 ∈ ( 0 [,] 1 ) ) |
| 28 | simpr | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑣 ∼ 𝑤 ) | |
| 29 | oveq12 | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑤 ) → ( 𝑥 − 𝑦 ) = ( 𝑣 − 𝑤 ) ) | |
| 30 | 29 | eleq1d | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑣 − 𝑤 ) ∈ ℚ ) ) |
| 31 | 30 1 | brab2a | ⊢ ( 𝑣 ∼ 𝑤 ↔ ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − 𝑤 ) ∈ ℚ ) ) |
| 32 | 28 31 | sylib | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − 𝑤 ) ∈ ℚ ) ) |
| 33 | 32 | simpld | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( 𝑣 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ) |
| 34 | 33 | simprd | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑤 ∈ ( 0 [,] 1 ) ) |
| 35 | 27 7 | syl | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑢 ∈ ℂ ) |
| 36 | 25 11 | syl | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑣 ∈ ℂ ) |
| 37 | 5 34 | sselid | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑤 ∈ ℝ ) |
| 38 | 37 | recnd | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑤 ∈ ℂ ) |
| 39 | 35 36 38 | npncand | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( ( 𝑢 − 𝑣 ) + ( 𝑣 − 𝑤 ) ) = ( 𝑢 − 𝑤 ) ) |
| 40 | 25 | simprd | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( 𝑢 − 𝑣 ) ∈ ℚ ) |
| 41 | 32 | simprd | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( 𝑣 − 𝑤 ) ∈ ℚ ) |
| 42 | qaddcl | ⊢ ( ( ( 𝑢 − 𝑣 ) ∈ ℚ ∧ ( 𝑣 − 𝑤 ) ∈ ℚ ) → ( ( 𝑢 − 𝑣 ) + ( 𝑣 − 𝑤 ) ) ∈ ℚ ) | |
| 43 | 40 41 42 | syl2anc | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( ( 𝑢 − 𝑣 ) + ( 𝑣 − 𝑤 ) ) ∈ ℚ ) |
| 44 | 39 43 | eqeltrrd | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → ( 𝑢 − 𝑤 ) ∈ ℚ ) |
| 45 | oveq12 | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑤 ) → ( 𝑥 − 𝑦 ) = ( 𝑢 − 𝑤 ) ) | |
| 46 | 45 | eleq1d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑢 − 𝑤 ) ∈ ℚ ) ) |
| 47 | 46 1 | brab2a | ⊢ ( 𝑢 ∼ 𝑤 ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑤 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑤 ) ∈ ℚ ) ) |
| 48 | 27 34 44 47 | syl21anbrc | ⊢ ( ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) → 𝑢 ∼ 𝑤 ) |
| 49 | 7 | subidd | ⊢ ( 𝑢 ∈ ( 0 [,] 1 ) → ( 𝑢 − 𝑢 ) = 0 ) |
| 50 | 0z | ⊢ 0 ∈ ℤ | |
| 51 | zq | ⊢ ( 0 ∈ ℤ → 0 ∈ ℚ ) | |
| 52 | 50 51 | ax-mp | ⊢ 0 ∈ ℚ |
| 53 | 49 52 | eqeltrdi | ⊢ ( 𝑢 ∈ ( 0 [,] 1 ) → ( 𝑢 − 𝑢 ) ∈ ℚ ) |
| 54 | 53 | adantr | ⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) → ( 𝑢 − 𝑢 ) ∈ ℚ ) |
| 55 | 54 | pm4.71i | ⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑢 ) ∈ ℚ ) ) |
| 56 | pm4.24 | ⊢ ( 𝑢 ∈ ( 0 [,] 1 ) ↔ ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ) | |
| 57 | oveq12 | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( 𝑥 − 𝑦 ) = ( 𝑢 − 𝑢 ) ) | |
| 58 | 57 | eleq1d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑢 − 𝑢 ) ∈ ℚ ) ) |
| 59 | 58 1 | brab2a | ⊢ ( 𝑢 ∼ 𝑢 ↔ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑢 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑢 − 𝑢 ) ∈ ℚ ) ) |
| 60 | 55 56 59 | 3bitr4i | ⊢ ( 𝑢 ∈ ( 0 [,] 1 ) ↔ 𝑢 ∼ 𝑢 ) |
| 61 | 2 23 48 60 | iseri | ⊢ ∼ Er ( 0 [,] 1 ) |