This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion for a binary relation. Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brab2a.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| brab2a.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) } | ||
| Assertion | brab2a | ⊢ ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brab2a.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | brab2a.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) } | |
| 3 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) } ⊆ ( 𝐶 × 𝐷 ) | |
| 4 | 2 3 | eqsstri | ⊢ 𝑅 ⊆ ( 𝐶 × 𝐷 ) |
| 5 | 4 | brel | ⊢ ( 𝐴 𝑅 𝐵 → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) |
| 6 | df-br | ⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) | |
| 7 | 2 | eleq2i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) } ) |
| 8 | 6 7 | bitri | ⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) } ) |
| 9 | 1 | opelopab2a | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜑 ) } ↔ 𝜓 ) ) |
| 10 | 8 9 | bitrid | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 𝑅 𝐵 ↔ 𝜓 ) ) |
| 11 | 5 10 | biadanii | ⊢ ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝜓 ) ) |