This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ectocl.1 | ⊢ 𝑆 = ( 𝐵 / 𝑅 ) | |
| ectocl.2 | ⊢ ( [ 𝑥 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ectocl.3 | ⊢ ( 𝑥 ∈ 𝐵 → 𝜑 ) | ||
| Assertion | ectocl | ⊢ ( 𝐴 ∈ 𝑆 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ectocl.1 | ⊢ 𝑆 = ( 𝐵 / 𝑅 ) | |
| 2 | ectocl.2 | ⊢ ( [ 𝑥 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | ectocl.3 | ⊢ ( 𝑥 ∈ 𝐵 → 𝜑 ) | |
| 4 | tru | ⊢ ⊤ | |
| 5 | 3 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ) → 𝜑 ) |
| 6 | 1 2 5 | ectocld | ⊢ ( ( ⊤ ∧ 𝐴 ∈ 𝑆 ) → 𝜓 ) |
| 7 | 4 6 | mpan | ⊢ ( 𝐴 ∈ 𝑆 → 𝜓 ) |