This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vitali | |- ( .< We RR -> dom vol C. ~P RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex | |- RR e. _V |
|
| 2 | 1 | pwex | |- ~P RR e. _V |
| 3 | weinxp | |- ( .< We RR <-> ( .< i^i ( RR X. RR ) ) We RR ) |
|
| 4 | unipw | |- U. ~P RR = RR |
|
| 5 | weeq2 | |- ( U. ~P RR = RR -> ( ( .< i^i ( RR X. RR ) ) We U. ~P RR <-> ( .< i^i ( RR X. RR ) ) We RR ) ) |
|
| 6 | 4 5 | ax-mp | |- ( ( .< i^i ( RR X. RR ) ) We U. ~P RR <-> ( .< i^i ( RR X. RR ) ) We RR ) |
| 7 | 3 6 | bitr4i | |- ( .< We RR <-> ( .< i^i ( RR X. RR ) ) We U. ~P RR ) |
| 8 | 1 1 | xpex | |- ( RR X. RR ) e. _V |
| 9 | 8 | inex2 | |- ( .< i^i ( RR X. RR ) ) e. _V |
| 10 | weeq1 | |- ( x = ( .< i^i ( RR X. RR ) ) -> ( x We U. ~P RR <-> ( .< i^i ( RR X. RR ) ) We U. ~P RR ) ) |
|
| 11 | 9 10 | spcev | |- ( ( .< i^i ( RR X. RR ) ) We U. ~P RR -> E. x x We U. ~P RR ) |
| 12 | 7 11 | sylbi | |- ( .< We RR -> E. x x We U. ~P RR ) |
| 13 | dfac8c | |- ( ~P RR e. _V -> ( E. x x We U. ~P RR -> E. f A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) ) |
|
| 14 | 2 12 13 | mpsyl | |- ( .< We RR -> E. f A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) |
| 15 | qex | |- QQ e. _V |
|
| 16 | 15 | inex1 | |- ( QQ i^i ( -u 1 [,] 1 ) ) e. _V |
| 17 | nnrecq | |- ( x e. NN -> ( 1 / x ) e. QQ ) |
|
| 18 | nnrecre | |- ( x e. NN -> ( 1 / x ) e. RR ) |
|
| 19 | neg1rr | |- -u 1 e. RR |
|
| 20 | 19 | a1i | |- ( x e. NN -> -u 1 e. RR ) |
| 21 | 0re | |- 0 e. RR |
|
| 22 | 21 | a1i | |- ( x e. NN -> 0 e. RR ) |
| 23 | neg1lt0 | |- -u 1 < 0 |
|
| 24 | 19 21 23 | ltleii | |- -u 1 <_ 0 |
| 25 | 24 | a1i | |- ( x e. NN -> -u 1 <_ 0 ) |
| 26 | nnrp | |- ( x e. NN -> x e. RR+ ) |
|
| 27 | 26 | rpreccld | |- ( x e. NN -> ( 1 / x ) e. RR+ ) |
| 28 | 27 | rpge0d | |- ( x e. NN -> 0 <_ ( 1 / x ) ) |
| 29 | 20 22 18 25 28 | letrd | |- ( x e. NN -> -u 1 <_ ( 1 / x ) ) |
| 30 | nnge1 | |- ( x e. NN -> 1 <_ x ) |
|
| 31 | nnre | |- ( x e. NN -> x e. RR ) |
|
| 32 | nngt0 | |- ( x e. NN -> 0 < x ) |
|
| 33 | 1re | |- 1 e. RR |
|
| 34 | 0lt1 | |- 0 < 1 |
|
| 35 | lerec | |- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( x e. RR /\ 0 < x ) ) -> ( 1 <_ x <-> ( 1 / x ) <_ ( 1 / 1 ) ) ) |
|
| 36 | 33 34 35 | mpanl12 | |- ( ( x e. RR /\ 0 < x ) -> ( 1 <_ x <-> ( 1 / x ) <_ ( 1 / 1 ) ) ) |
| 37 | 31 32 36 | syl2anc | |- ( x e. NN -> ( 1 <_ x <-> ( 1 / x ) <_ ( 1 / 1 ) ) ) |
| 38 | 30 37 | mpbid | |- ( x e. NN -> ( 1 / x ) <_ ( 1 / 1 ) ) |
| 39 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 40 | 38 39 | breqtrdi | |- ( x e. NN -> ( 1 / x ) <_ 1 ) |
| 41 | 19 33 | elicc2i | |- ( ( 1 / x ) e. ( -u 1 [,] 1 ) <-> ( ( 1 / x ) e. RR /\ -u 1 <_ ( 1 / x ) /\ ( 1 / x ) <_ 1 ) ) |
| 42 | 18 29 40 41 | syl3anbrc | |- ( x e. NN -> ( 1 / x ) e. ( -u 1 [,] 1 ) ) |
| 43 | 17 42 | elind | |- ( x e. NN -> ( 1 / x ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 44 | oveq2 | |- ( ( 1 / x ) = ( 1 / y ) -> ( 1 / ( 1 / x ) ) = ( 1 / ( 1 / y ) ) ) |
|
| 45 | nncn | |- ( x e. NN -> x e. CC ) |
|
| 46 | nnne0 | |- ( x e. NN -> x =/= 0 ) |
|
| 47 | 45 46 | recrecd | |- ( x e. NN -> ( 1 / ( 1 / x ) ) = x ) |
| 48 | nncn | |- ( y e. NN -> y e. CC ) |
|
| 49 | nnne0 | |- ( y e. NN -> y =/= 0 ) |
|
| 50 | 48 49 | recrecd | |- ( y e. NN -> ( 1 / ( 1 / y ) ) = y ) |
| 51 | 47 50 | eqeqan12d | |- ( ( x e. NN /\ y e. NN ) -> ( ( 1 / ( 1 / x ) ) = ( 1 / ( 1 / y ) ) <-> x = y ) ) |
| 52 | 44 51 | imbitrid | |- ( ( x e. NN /\ y e. NN ) -> ( ( 1 / x ) = ( 1 / y ) -> x = y ) ) |
| 53 | oveq2 | |- ( x = y -> ( 1 / x ) = ( 1 / y ) ) |
|
| 54 | 52 53 | impbid1 | |- ( ( x e. NN /\ y e. NN ) -> ( ( 1 / x ) = ( 1 / y ) <-> x = y ) ) |
| 55 | 43 54 | dom2 | |- ( ( QQ i^i ( -u 1 [,] 1 ) ) e. _V -> NN ~<_ ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 56 | 16 55 | ax-mp | |- NN ~<_ ( QQ i^i ( -u 1 [,] 1 ) ) |
| 57 | inss1 | |- ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ |
|
| 58 | ssdomg | |- ( QQ e. _V -> ( ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ -> ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ QQ ) ) |
|
| 59 | 15 57 58 | mp2 | |- ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ QQ |
| 60 | qnnen | |- QQ ~~ NN |
|
| 61 | domentr | |- ( ( ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ QQ /\ QQ ~~ NN ) -> ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ NN ) |
|
| 62 | 59 60 61 | mp2an | |- ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ NN |
| 63 | sbth | |- ( ( NN ~<_ ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ NN ) -> NN ~~ ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 64 | 56 62 63 | mp2an | |- NN ~~ ( QQ i^i ( -u 1 [,] 1 ) ) |
| 65 | bren | |- ( NN ~~ ( QQ i^i ( -u 1 [,] 1 ) ) <-> E. g g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 66 | 64 65 | mpbi | |- E. g g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) |
| 67 | eleq1w | |- ( a = x -> ( a e. ( 0 [,] 1 ) <-> x e. ( 0 [,] 1 ) ) ) |
|
| 68 | eleq1w | |- ( b = y -> ( b e. ( 0 [,] 1 ) <-> y e. ( 0 [,] 1 ) ) ) |
|
| 69 | 67 68 | bi2anan9 | |- ( ( a = x /\ b = y ) -> ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) <-> ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) ) |
| 70 | oveq12 | |- ( ( a = x /\ b = y ) -> ( a - b ) = ( x - y ) ) |
|
| 71 | 70 | eleq1d | |- ( ( a = x /\ b = y ) -> ( ( a - b ) e. QQ <-> ( x - y ) e. QQ ) ) |
| 72 | 69 71 | anbi12d | |- ( ( a = x /\ b = y ) -> ( ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) <-> ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) ) ) |
| 73 | 72 | cbvopabv | |- { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
| 74 | eqid | |- ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) = ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |
|
| 75 | fvex | |- ( f ` c ) e. _V |
|
| 76 | eqid | |- ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) = ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) |
|
| 77 | 75 76 | fnmpti | |- ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) Fn ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |
| 78 | 77 | a1i | |- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) Fn ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ) |
| 79 | neeq1 | |- ( z = w -> ( z =/= (/) <-> w =/= (/) ) ) |
|
| 80 | fveq2 | |- ( z = w -> ( f ` z ) = ( f ` w ) ) |
|
| 81 | id | |- ( z = w -> z = w ) |
|
| 82 | 80 81 | eleq12d | |- ( z = w -> ( ( f ` z ) e. z <-> ( f ` w ) e. w ) ) |
| 83 | 79 82 | imbi12d | |- ( z = w -> ( ( z =/= (/) -> ( f ` z ) e. z ) <-> ( w =/= (/) -> ( f ` w ) e. w ) ) ) |
| 84 | 83 | cbvralvw | |- ( A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) <-> A. w e. ~P RR ( w =/= (/) -> ( f ` w ) e. w ) ) |
| 85 | 73 | vitalilem1 | |- { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } Er ( 0 [,] 1 ) |
| 86 | 85 | a1i | |- ( T. -> { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } Er ( 0 [,] 1 ) ) |
| 87 | 86 | qsss | |- ( T. -> ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P ( 0 [,] 1 ) ) |
| 88 | 87 | mptru | |- ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P ( 0 [,] 1 ) |
| 89 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 90 | 89 | sspwi | |- ~P ( 0 [,] 1 ) C_ ~P RR |
| 91 | 88 90 | sstri | |- ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P RR |
| 92 | ssralv | |- ( ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P RR -> ( A. w e. ~P RR ( w =/= (/) -> ( f ` w ) e. w ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) ) |
|
| 93 | 91 92 | ax-mp | |- ( A. w e. ~P RR ( w =/= (/) -> ( f ` w ) e. w ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) |
| 94 | 84 93 | sylbi | |- ( A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) |
| 95 | fveq2 | |- ( c = w -> ( f ` c ) = ( f ` w ) ) |
|
| 96 | fvex | |- ( f ` w ) e. _V |
|
| 97 | 95 76 96 | fvmpt | |- ( w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) = ( f ` w ) ) |
| 98 | 97 | eleq1d | |- ( w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) -> ( ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w <-> ( f ` w ) e. w ) ) |
| 99 | 98 | imbi2d | |- ( w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) -> ( ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) <-> ( w =/= (/) -> ( f ` w ) e. w ) ) ) |
| 100 | 99 | ralbiia | |- ( A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) <-> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) |
| 101 | 94 100 | sylibr | |- ( A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) ) |
| 102 | 101 | ad2antlr | |- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) ) |
| 103 | simprl | |- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 104 | oveq1 | |- ( t = s -> ( t - ( g ` m ) ) = ( s - ( g ` m ) ) ) |
|
| 105 | 104 | eleq1d | |- ( t = s -> ( ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) <-> ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ) ) |
| 106 | 105 | cbvrabv | |- { t e. RR | ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } = { s e. RR | ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } |
| 107 | fveq2 | |- ( m = n -> ( g ` m ) = ( g ` n ) ) |
|
| 108 | 107 | oveq2d | |- ( m = n -> ( s - ( g ` m ) ) = ( s - ( g ` n ) ) ) |
| 109 | 108 | eleq1d | |- ( m = n -> ( ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) <-> ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ) ) |
| 110 | 109 | rabbidv | |- ( m = n -> { s e. RR | ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } = { s e. RR | ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) |
| 111 | 106 110 | eqtrid | |- ( m = n -> { t e. RR | ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } = { s e. RR | ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) |
| 112 | 111 | cbvmptv | |- ( m e. NN |-> { t e. RR | ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) = ( n e. NN |-> { s e. RR | ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) |
| 113 | simprr | |- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) |
|
| 114 | 73 74 78 102 103 112 113 | vitalilem5 | |- -. ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) |
| 115 | 114 | pm2.21i | |- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) |
| 116 | 115 | expr | |- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) -> ( -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) -> ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) |
| 117 | 116 | pm2.18d | |- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) -> ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) |
| 118 | eldif | |- ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) <-> ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ~P RR /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. dom vol ) ) |
|
| 119 | mblss | |- ( x e. dom vol -> x C_ RR ) |
|
| 120 | velpw | |- ( x e. ~P RR <-> x C_ RR ) |
|
| 121 | 119 120 | sylibr | |- ( x e. dom vol -> x e. ~P RR ) |
| 122 | 121 | ssriv | |- dom vol C_ ~P RR |
| 123 | ssnelpss | |- ( dom vol C_ ~P RR -> ( ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ~P RR /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. dom vol ) -> dom vol C. ~P RR ) ) |
|
| 124 | 122 123 | ax-mp | |- ( ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ~P RR /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. dom vol ) -> dom vol C. ~P RR ) |
| 125 | 118 124 | sylbi | |- ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) -> dom vol C. ~P RR ) |
| 126 | 117 125 | syl | |- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) -> dom vol C. ~P RR ) |
| 127 | 126 | ex | |- ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) -> ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> dom vol C. ~P RR ) ) |
| 128 | 127 | exlimdv | |- ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) -> ( E. g g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> dom vol C. ~P RR ) ) |
| 129 | 66 128 | mpi | |- ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) -> dom vol C. ~P RR ) |
| 130 | 14 129 | exlimddv | |- ( .< We RR -> dom vol C. ~P RR ) |