This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998) Extract breng as an intermediate result. (Revised by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bren | ⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 2 | f1ofn | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 Fn 𝐴 ) | |
| 3 | fndm | ⊢ ( 𝑓 Fn 𝐴 → dom 𝑓 = 𝐴 ) | |
| 4 | vex | ⊢ 𝑓 ∈ V | |
| 5 | 4 | dmex | ⊢ dom 𝑓 ∈ V |
| 6 | 3 5 | eqeltrrdi | ⊢ ( 𝑓 Fn 𝐴 → 𝐴 ∈ V ) |
| 7 | 2 6 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐴 ∈ V ) |
| 8 | f1ofo | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) | |
| 9 | forn | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ran 𝑓 = 𝐵 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ran 𝑓 = 𝐵 ) |
| 11 | 4 | rnex | ⊢ ran 𝑓 ∈ V |
| 12 | 10 11 | eqeltrrdi | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐵 ∈ V ) |
| 13 | 7 12 | jca | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 14 | 13 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 15 | breng | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) | |
| 16 | 1 14 15 | pm5.21nii | ⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |