This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence B is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem12.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| stirlinglem12.2 | ⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | ||
| stirlinglem12.3 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) | ||
| Assertion | stirlinglem12 | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem12.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| 2 | stirlinglem12.2 | ⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 3 | stirlinglem12.3 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) | |
| 4 | 1nn | ⊢ 1 ∈ ℕ | |
| 5 | 1 | stirlinglem2 | ⊢ ( 1 ∈ ℕ → ( 𝐴 ‘ 1 ) ∈ ℝ+ ) |
| 6 | relogcl | ⊢ ( ( 𝐴 ‘ 1 ) ∈ ℝ+ → ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ ) | |
| 7 | 4 5 6 | mp2b | ⊢ ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ |
| 8 | nfcv | ⊢ Ⅎ 𝑛 1 | |
| 9 | nfcv | ⊢ Ⅎ 𝑛 log | |
| 10 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| 11 | 1 10 | nfcxfr | ⊢ Ⅎ 𝑛 𝐴 |
| 12 | 11 8 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 1 ) |
| 13 | 9 12 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 1 ) ) |
| 14 | 2fveq3 | ⊢ ( 𝑛 = 1 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) | |
| 15 | 8 13 14 2 | fvmptf | ⊢ ( ( 1 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ ) → ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) |
| 16 | 4 7 15 | mp2an | ⊢ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) |
| 17 | 16 7 | eqeltri | ⊢ ( 𝐵 ‘ 1 ) ∈ ℝ |
| 18 | 17 | a1i | ⊢ ( 𝑁 ∈ ℕ → ( 𝐵 ‘ 1 ) ∈ ℝ ) |
| 19 | 1 | stirlinglem2 | ⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ‘ 𝑁 ) ∈ ℝ+ ) |
| 20 | 19 | relogcld | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ∈ ℝ ) |
| 21 | nfcv | ⊢ Ⅎ 𝑛 𝑁 | |
| 22 | 11 21 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑁 ) |
| 23 | 9 22 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑁 ) ) |
| 24 | 2fveq3 | ⊢ ( 𝑛 = 𝑁 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) | |
| 25 | 21 23 24 2 | fvmptf | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ∈ ℝ ) → ( 𝐵 ‘ 𝑁 ) = ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) |
| 26 | 20 25 | mpdan | ⊢ ( 𝑁 ∈ ℕ → ( 𝐵 ‘ 𝑁 ) = ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) |
| 27 | 26 20 | eqeltrd | ⊢ ( 𝑁 ∈ ℕ → ( 𝐵 ‘ 𝑁 ) ∈ ℝ ) |
| 28 | 4re | ⊢ 4 ∈ ℝ | |
| 29 | 4ne0 | ⊢ 4 ≠ 0 | |
| 30 | 28 29 | rereccli | ⊢ ( 1 / 4 ) ∈ ℝ |
| 31 | 30 | a1i | ⊢ ( 𝑁 ∈ ℕ → ( 1 / 4 ) ∈ ℝ ) |
| 32 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑗 ) ) | |
| 33 | fveq2 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) | |
| 34 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 1 ) ) | |
| 35 | fveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑁 ) ) | |
| 36 | elnnuz | ⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 37 | 36 | biimpi | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 38 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) | |
| 39 | 1 | stirlinglem2 | ⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) ∈ ℝ+ ) |
| 40 | 38 39 | syl | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ+ ) |
| 41 | 40 | relogcld | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
| 42 | nfcv | ⊢ Ⅎ 𝑛 𝑘 | |
| 43 | 11 42 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑘 ) |
| 44 | 9 43 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑘 ) ) |
| 45 | 2fveq3 | ⊢ ( 𝑛 = 𝑘 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) | |
| 46 | 42 44 45 2 | fvmptf | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) → ( 𝐵 ‘ 𝑘 ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 47 | 38 41 46 | syl2anc | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐵 ‘ 𝑘 ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 48 | 47 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑘 ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 49 | 40 | rpcnd | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 50 | 49 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 51 | 39 | rpne0d | ⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) ≠ 0 ) |
| 52 | 38 51 | syl | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴 ‘ 𝑘 ) ≠ 0 ) |
| 53 | 52 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ≠ 0 ) |
| 54 | 50 53 | logcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 55 | 48 54 | eqeltrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ℂ ) |
| 56 | 32 33 34 35 37 55 | telfsumo | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝐵 ‘ 1 ) − ( 𝐵 ‘ 𝑁 ) ) ) |
| 57 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 58 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 1 ..^ 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) ) | |
| 59 | 57 58 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 1 ..^ 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 60 | 59 | sumeq1d | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ) |
| 61 | 56 60 | eqtr3d | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 𝐵 ‘ 𝑁 ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ) |
| 62 | fzfid | ⊢ ( 𝑁 ∈ ℕ → ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin ) | |
| 63 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℕ ) | |
| 64 | 63 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℕ ) |
| 65 | 1 | stirlinglem2 | ⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ 𝑗 ) ∈ ℝ+ ) |
| 66 | 65 | relogcld | ⊢ ( 𝑗 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ∈ ℝ ) |
| 67 | nfcv | ⊢ Ⅎ 𝑛 𝑗 | |
| 68 | 11 67 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑗 ) |
| 69 | 9 68 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑗 ) ) |
| 70 | 2fveq3 | ⊢ ( 𝑛 = 𝑗 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) | |
| 71 | 67 69 70 2 | fvmptf | ⊢ ( ( 𝑗 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ∈ ℝ ) → ( 𝐵 ‘ 𝑗 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 72 | 66 71 | mpdan | ⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ 𝑗 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 73 | 72 66 | eqeltrd | ⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
| 74 | 64 73 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
| 75 | peano2nn | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) | |
| 76 | 1 | stirlinglem2 | ⊢ ( ( 𝑗 + 1 ) ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 77 | 75 76 | syl | ⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 78 | 77 | relogcld | ⊢ ( 𝑗 ∈ ℕ → ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 79 | nfcv | ⊢ Ⅎ 𝑛 ( 𝑗 + 1 ) | |
| 80 | 11 79 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ ( 𝑗 + 1 ) ) |
| 81 | 9 80 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) |
| 82 | 2fveq3 | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) | |
| 83 | 79 81 82 2 | fvmptf | ⊢ ( ( ( 𝑗 + 1 ) ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 84 | 75 78 83 | syl2anc | ⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 85 | 84 78 | eqeltrd | ⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 86 | 63 85 | syl | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 87 | 86 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 88 | 74 87 | resubcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 89 | 62 88 | fsumrecl | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 90 | 30 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 1 / 4 ) ∈ ℝ ) |
| 91 | 63 | nnred | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℝ ) |
| 92 | 1red | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 1 ∈ ℝ ) | |
| 93 | 91 92 | readdcld | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℝ ) |
| 94 | 91 93 | remulcld | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 95 | 91 | recnd | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℂ ) |
| 96 | 1cnd | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 1 ∈ ℂ ) | |
| 97 | 95 96 | addcld | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℂ ) |
| 98 | 63 | nnne0d | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ≠ 0 ) |
| 99 | 75 | nnne0d | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ≠ 0 ) |
| 100 | 63 99 | syl | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ≠ 0 ) |
| 101 | 95 97 98 100 | mulne0d | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 ) |
| 102 | 94 101 | rereccld | ⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 103 | 102 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 104 | 90 103 | remulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ∈ ℝ ) |
| 105 | 62 104 | fsumrecl | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ∈ ℝ ) |
| 106 | eqid | ⊢ ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑖 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑖 ) ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑖 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑖 ) ) ) ) | |
| 107 | eqid | ⊢ ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑗 ) + 1 ) ↑ 2 ) ) ↑ 𝑖 ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑗 ) + 1 ) ↑ 2 ) ) ↑ 𝑖 ) ) | |
| 108 | 1 2 106 107 | stirlinglem10 | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 109 | 64 108 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 110 | 62 88 104 109 | fsumle | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 111 | 62 103 | fsumrecl | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 112 | 1red | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) | |
| 113 | 4pos | ⊢ 0 < 4 | |
| 114 | 28 113 | elrpii | ⊢ 4 ∈ ℝ+ |
| 115 | 114 | a1i | ⊢ ( 𝑁 ∈ ℕ → 4 ∈ ℝ+ ) |
| 116 | 0red | ⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) | |
| 117 | 0lt1 | ⊢ 0 < 1 | |
| 118 | 117 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
| 119 | 116 112 118 | ltled | ⊢ ( 𝑁 ∈ ℕ → 0 ≤ 1 ) |
| 120 | 112 115 119 | divge0d | ⊢ ( 𝑁 ∈ ℕ → 0 ≤ ( 1 / 4 ) ) |
| 121 | eqid | ⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) | |
| 122 | eluznn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ℕ ) | |
| 123 | 3 | a1i | ⊢ ( 𝑗 ∈ ℕ → 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 124 | simpr | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → 𝑛 = 𝑗 ) | |
| 125 | 124 | oveq1d | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( 𝑛 + 1 ) = ( 𝑗 + 1 ) ) |
| 126 | 124 125 | oveq12d | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( 𝑛 · ( 𝑛 + 1 ) ) = ( 𝑗 · ( 𝑗 + 1 ) ) ) |
| 127 | 126 | oveq2d | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 128 | id | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ ) | |
| 129 | nnre | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) | |
| 130 | 1red | ⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℝ ) | |
| 131 | 129 130 | readdcld | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℝ ) |
| 132 | 129 131 | remulcld | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 133 | nncn | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) | |
| 134 | 1cnd | ⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℂ ) | |
| 135 | 133 134 | addcld | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℂ ) |
| 136 | nnne0 | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ≠ 0 ) | |
| 137 | 133 135 136 99 | mulne0d | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 ) |
| 138 | 132 137 | rereccld | ⊢ ( 𝑗 ∈ ℕ → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 139 | 123 127 128 138 | fvmptd | ⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 140 | 122 139 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 141 | 122 | nnred | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ℝ ) |
| 142 | 1red | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 1 ∈ ℝ ) | |
| 143 | 141 142 | readdcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 + 1 ) ∈ ℝ ) |
| 144 | 141 143 | remulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 145 | 141 | recnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ℂ ) |
| 146 | 1cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 1 ∈ ℂ ) | |
| 147 | 145 146 | addcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 + 1 ) ∈ ℂ ) |
| 148 | 122 | nnne0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ≠ 0 ) |
| 149 | 122 99 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 + 1 ) ≠ 0 ) |
| 150 | 145 147 148 149 | mulne0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 ) |
| 151 | 144 150 | rereccld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 152 | seqeq1 | ⊢ ( 𝑁 = 1 → seq 𝑁 ( + , 𝐹 ) = seq 1 ( + , 𝐹 ) ) | |
| 153 | 3 | trireciplem | ⊢ seq 1 ( + , 𝐹 ) ⇝ 1 |
| 154 | climrel | ⊢ Rel ⇝ | |
| 155 | 154 | releldmi | ⊢ ( seq 1 ( + , 𝐹 ) ⇝ 1 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 156 | 153 155 | mp1i | ⊢ ( 𝑁 = 1 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 157 | 152 156 | eqeltrd | ⊢ ( 𝑁 = 1 → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 158 | 157 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 159 | simpl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ℕ ) | |
| 160 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ¬ 𝑁 = 1 ) | |
| 161 | elnn1uz2 | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 162 | 159 161 | sylib | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 163 | 162 | ord | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( ¬ 𝑁 = 1 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 164 | 160 163 | mpd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 165 | uz2m1nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℕ ) | |
| 166 | 164 165 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
| 167 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 168 | 167 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 169 | 1cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → 1 ∈ ℂ ) | |
| 170 | 168 169 | npcand | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 171 | 170 | eqcomd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → 𝑁 = ( ( 𝑁 − 1 ) + 1 ) ) |
| 172 | 171 | seqeq1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq 𝑁 ( + , 𝐹 ) = seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ) |
| 173 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 174 | id | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ ) | |
| 175 | 138 | recnd | ⊢ ( 𝑗 ∈ ℕ → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 176 | 139 175 | eqeltrd | ⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 177 | 176 | adantl | ⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 178 | 153 | a1i | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ → seq 1 ( + , 𝐹 ) ⇝ 1 ) |
| 179 | 173 174 177 178 | clim2ser | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 180 | 179 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 181 | 172 180 | eqbrtrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq 𝑁 ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 182 | 154 | releldmi | ⊢ ( seq 𝑁 ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 183 | 181 182 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 184 | 159 166 183 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 185 | 158 184 | pm2.61dan | ⊢ ( 𝑁 ∈ ℕ → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 186 | 121 57 140 151 185 | isumrecl | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 187 | 122 | nnrpd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ℝ+ ) |
| 188 | 187 | rpge0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ 𝑗 ) |
| 189 | 141 188 | ge0p1rpd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 + 1 ) ∈ ℝ+ ) |
| 190 | 187 189 | rpmulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 191 | 119 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ 1 ) |
| 192 | 142 190 191 | divge0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 193 | 121 57 140 151 185 192 | isumge0 | ⊢ ( 𝑁 ∈ ℕ → 0 ≤ Σ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 194 | 116 186 111 193 | leadd2dd | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + 0 ) ≤ ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + Σ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 195 | 111 | recnd | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 196 | 195 | addridd | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + 0 ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 197 | 196 | eqcomd | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + 0 ) ) |
| 198 | id | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) | |
| 199 | 139 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 200 | 133 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℂ ) |
| 201 | 1cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℂ ) | |
| 202 | 200 201 | addcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℂ ) |
| 203 | 200 202 | mulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 204 | 136 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 𝑗 ≠ 0 ) |
| 205 | 99 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ≠ 0 ) |
| 206 | 200 202 204 205 | mulne0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 ) |
| 207 | 203 206 | reccld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 208 | 153 155 | mp1i | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 209 | 173 121 198 199 207 208 | isumsplit | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + Σ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 210 | 194 197 209 | 3brtr4d | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ≤ Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 211 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 212 | 139 | adantl | ⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 213 | 175 | adantl | ⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 214 | 153 | a1i | ⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ⇝ 1 ) |
| 215 | 173 211 212 213 214 | isumclim | ⊢ ( ⊤ → Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = 1 ) |
| 216 | 215 | mptru | ⊢ Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = 1 |
| 217 | 210 216 | breqtrdi | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ≤ 1 ) |
| 218 | 111 112 31 120 217 | lemul2ad | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ≤ ( ( 1 / 4 ) · 1 ) ) |
| 219 | 4cn | ⊢ 4 ∈ ℂ | |
| 220 | 219 | a1i | ⊢ ( 𝑁 ∈ ℕ → 4 ∈ ℂ ) |
| 221 | 113 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 < 4 ) |
| 222 | 221 | gt0ne0d | ⊢ ( 𝑁 ∈ ℕ → 4 ≠ 0 ) |
| 223 | 220 222 | reccld | ⊢ ( 𝑁 ∈ ℕ → ( 1 / 4 ) ∈ ℂ ) |
| 224 | 103 | recnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 225 | 62 223 224 | fsummulc2 | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 226 | 223 | mulridd | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · 1 ) = ( 1 / 4 ) ) |
| 227 | 218 225 226 | 3brtr3d | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ≤ ( 1 / 4 ) ) |
| 228 | 89 105 31 110 227 | letrd | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 1 / 4 ) ) |
| 229 | 61 228 | eqbrtrd | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 𝐵 ‘ 𝑁 ) ) ≤ ( 1 / 4 ) ) |
| 230 | 18 27 31 229 | subled | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑁 ) ) |