This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence B is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem12.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| stirlinglem12.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
||
| stirlinglem12.3 | |- F = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) |
||
| Assertion | stirlinglem12 | |- ( N e. NN -> ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem12.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 2 | stirlinglem12.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
|
| 3 | stirlinglem12.3 | |- F = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) |
|
| 4 | 1nn | |- 1 e. NN |
|
| 5 | 1 | stirlinglem2 | |- ( 1 e. NN -> ( A ` 1 ) e. RR+ ) |
| 6 | relogcl | |- ( ( A ` 1 ) e. RR+ -> ( log ` ( A ` 1 ) ) e. RR ) |
|
| 7 | 4 5 6 | mp2b | |- ( log ` ( A ` 1 ) ) e. RR |
| 8 | nfcv | |- F/_ n 1 |
|
| 9 | nfcv | |- F/_ n log |
|
| 10 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 11 | 1 10 | nfcxfr | |- F/_ n A |
| 12 | 11 8 | nffv | |- F/_ n ( A ` 1 ) |
| 13 | 9 12 | nffv | |- F/_ n ( log ` ( A ` 1 ) ) |
| 14 | 2fveq3 | |- ( n = 1 -> ( log ` ( A ` n ) ) = ( log ` ( A ` 1 ) ) ) |
|
| 15 | 8 13 14 2 | fvmptf | |- ( ( 1 e. NN /\ ( log ` ( A ` 1 ) ) e. RR ) -> ( B ` 1 ) = ( log ` ( A ` 1 ) ) ) |
| 16 | 4 7 15 | mp2an | |- ( B ` 1 ) = ( log ` ( A ` 1 ) ) |
| 17 | 16 7 | eqeltri | |- ( B ` 1 ) e. RR |
| 18 | 17 | a1i | |- ( N e. NN -> ( B ` 1 ) e. RR ) |
| 19 | 1 | stirlinglem2 | |- ( N e. NN -> ( A ` N ) e. RR+ ) |
| 20 | 19 | relogcld | |- ( N e. NN -> ( log ` ( A ` N ) ) e. RR ) |
| 21 | nfcv | |- F/_ n N |
|
| 22 | 11 21 | nffv | |- F/_ n ( A ` N ) |
| 23 | 9 22 | nffv | |- F/_ n ( log ` ( A ` N ) ) |
| 24 | 2fveq3 | |- ( n = N -> ( log ` ( A ` n ) ) = ( log ` ( A ` N ) ) ) |
|
| 25 | 21 23 24 2 | fvmptf | |- ( ( N e. NN /\ ( log ` ( A ` N ) ) e. RR ) -> ( B ` N ) = ( log ` ( A ` N ) ) ) |
| 26 | 20 25 | mpdan | |- ( N e. NN -> ( B ` N ) = ( log ` ( A ` N ) ) ) |
| 27 | 26 20 | eqeltrd | |- ( N e. NN -> ( B ` N ) e. RR ) |
| 28 | 4re | |- 4 e. RR |
|
| 29 | 4ne0 | |- 4 =/= 0 |
|
| 30 | 28 29 | rereccli | |- ( 1 / 4 ) e. RR |
| 31 | 30 | a1i | |- ( N e. NN -> ( 1 / 4 ) e. RR ) |
| 32 | fveq2 | |- ( k = j -> ( B ` k ) = ( B ` j ) ) |
|
| 33 | fveq2 | |- ( k = ( j + 1 ) -> ( B ` k ) = ( B ` ( j + 1 ) ) ) |
|
| 34 | fveq2 | |- ( k = 1 -> ( B ` k ) = ( B ` 1 ) ) |
|
| 35 | fveq2 | |- ( k = N -> ( B ` k ) = ( B ` N ) ) |
|
| 36 | elnnuz | |- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
|
| 37 | 36 | biimpi | |- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
| 38 | elfznn | |- ( k e. ( 1 ... N ) -> k e. NN ) |
|
| 39 | 1 | stirlinglem2 | |- ( k e. NN -> ( A ` k ) e. RR+ ) |
| 40 | 38 39 | syl | |- ( k e. ( 1 ... N ) -> ( A ` k ) e. RR+ ) |
| 41 | 40 | relogcld | |- ( k e. ( 1 ... N ) -> ( log ` ( A ` k ) ) e. RR ) |
| 42 | nfcv | |- F/_ n k |
|
| 43 | 11 42 | nffv | |- F/_ n ( A ` k ) |
| 44 | 9 43 | nffv | |- F/_ n ( log ` ( A ` k ) ) |
| 45 | 2fveq3 | |- ( n = k -> ( log ` ( A ` n ) ) = ( log ` ( A ` k ) ) ) |
|
| 46 | 42 44 45 2 | fvmptf | |- ( ( k e. NN /\ ( log ` ( A ` k ) ) e. RR ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) |
| 47 | 38 41 46 | syl2anc | |- ( k e. ( 1 ... N ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) |
| 48 | 47 | adantl | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) |
| 49 | 40 | rpcnd | |- ( k e. ( 1 ... N ) -> ( A ` k ) e. CC ) |
| 50 | 49 | adantl | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( A ` k ) e. CC ) |
| 51 | 39 | rpne0d | |- ( k e. NN -> ( A ` k ) =/= 0 ) |
| 52 | 38 51 | syl | |- ( k e. ( 1 ... N ) -> ( A ` k ) =/= 0 ) |
| 53 | 52 | adantl | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( A ` k ) =/= 0 ) |
| 54 | 50 53 | logcld | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( log ` ( A ` k ) ) e. CC ) |
| 55 | 48 54 | eqeltrd | |- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> ( B ` k ) e. CC ) |
| 56 | 32 33 34 35 37 55 | telfsumo | |- ( N e. NN -> sum_ j e. ( 1 ..^ N ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) = ( ( B ` 1 ) - ( B ` N ) ) ) |
| 57 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 58 | fzoval | |- ( N e. ZZ -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) |
|
| 59 | 57 58 | syl | |- ( N e. NN -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) |
| 60 | 59 | sumeq1d | |- ( N e. NN -> sum_ j e. ( 1 ..^ N ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) ) |
| 61 | 56 60 | eqtr3d | |- ( N e. NN -> ( ( B ` 1 ) - ( B ` N ) ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) ) |
| 62 | fzfid | |- ( N e. NN -> ( 1 ... ( N - 1 ) ) e. Fin ) |
|
| 63 | elfznn | |- ( j e. ( 1 ... ( N - 1 ) ) -> j e. NN ) |
|
| 64 | 63 | adantl | |- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> j e. NN ) |
| 65 | 1 | stirlinglem2 | |- ( j e. NN -> ( A ` j ) e. RR+ ) |
| 66 | 65 | relogcld | |- ( j e. NN -> ( log ` ( A ` j ) ) e. RR ) |
| 67 | nfcv | |- F/_ n j |
|
| 68 | 11 67 | nffv | |- F/_ n ( A ` j ) |
| 69 | 9 68 | nffv | |- F/_ n ( log ` ( A ` j ) ) |
| 70 | 2fveq3 | |- ( n = j -> ( log ` ( A ` n ) ) = ( log ` ( A ` j ) ) ) |
|
| 71 | 67 69 70 2 | fvmptf | |- ( ( j e. NN /\ ( log ` ( A ` j ) ) e. RR ) -> ( B ` j ) = ( log ` ( A ` j ) ) ) |
| 72 | 66 71 | mpdan | |- ( j e. NN -> ( B ` j ) = ( log ` ( A ` j ) ) ) |
| 73 | 72 66 | eqeltrd | |- ( j e. NN -> ( B ` j ) e. RR ) |
| 74 | 64 73 | syl | |- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( B ` j ) e. RR ) |
| 75 | peano2nn | |- ( j e. NN -> ( j + 1 ) e. NN ) |
|
| 76 | 1 | stirlinglem2 | |- ( ( j + 1 ) e. NN -> ( A ` ( j + 1 ) ) e. RR+ ) |
| 77 | 75 76 | syl | |- ( j e. NN -> ( A ` ( j + 1 ) ) e. RR+ ) |
| 78 | 77 | relogcld | |- ( j e. NN -> ( log ` ( A ` ( j + 1 ) ) ) e. RR ) |
| 79 | nfcv | |- F/_ n ( j + 1 ) |
|
| 80 | 11 79 | nffv | |- F/_ n ( A ` ( j + 1 ) ) |
| 81 | 9 80 | nffv | |- F/_ n ( log ` ( A ` ( j + 1 ) ) ) |
| 82 | 2fveq3 | |- ( n = ( j + 1 ) -> ( log ` ( A ` n ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
|
| 83 | 79 81 82 2 | fvmptf | |- ( ( ( j + 1 ) e. NN /\ ( log ` ( A ` ( j + 1 ) ) ) e. RR ) -> ( B ` ( j + 1 ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
| 84 | 75 78 83 | syl2anc | |- ( j e. NN -> ( B ` ( j + 1 ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
| 85 | 84 78 | eqeltrd | |- ( j e. NN -> ( B ` ( j + 1 ) ) e. RR ) |
| 86 | 63 85 | syl | |- ( j e. ( 1 ... ( N - 1 ) ) -> ( B ` ( j + 1 ) ) e. RR ) |
| 87 | 86 | adantl | |- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( B ` ( j + 1 ) ) e. RR ) |
| 88 | 74 87 | resubcld | |- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( ( B ` j ) - ( B ` ( j + 1 ) ) ) e. RR ) |
| 89 | 62 88 | fsumrecl | |- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) e. RR ) |
| 90 | 30 | a1i | |- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( 1 / 4 ) e. RR ) |
| 91 | 63 | nnred | |- ( j e. ( 1 ... ( N - 1 ) ) -> j e. RR ) |
| 92 | 1red | |- ( j e. ( 1 ... ( N - 1 ) ) -> 1 e. RR ) |
|
| 93 | 91 92 | readdcld | |- ( j e. ( 1 ... ( N - 1 ) ) -> ( j + 1 ) e. RR ) |
| 94 | 91 93 | remulcld | |- ( j e. ( 1 ... ( N - 1 ) ) -> ( j x. ( j + 1 ) ) e. RR ) |
| 95 | 91 | recnd | |- ( j e. ( 1 ... ( N - 1 ) ) -> j e. CC ) |
| 96 | 1cnd | |- ( j e. ( 1 ... ( N - 1 ) ) -> 1 e. CC ) |
|
| 97 | 95 96 | addcld | |- ( j e. ( 1 ... ( N - 1 ) ) -> ( j + 1 ) e. CC ) |
| 98 | 63 | nnne0d | |- ( j e. ( 1 ... ( N - 1 ) ) -> j =/= 0 ) |
| 99 | 75 | nnne0d | |- ( j e. NN -> ( j + 1 ) =/= 0 ) |
| 100 | 63 99 | syl | |- ( j e. ( 1 ... ( N - 1 ) ) -> ( j + 1 ) =/= 0 ) |
| 101 | 95 97 98 100 | mulne0d | |- ( j e. ( 1 ... ( N - 1 ) ) -> ( j x. ( j + 1 ) ) =/= 0 ) |
| 102 | 94 101 | rereccld | |- ( j e. ( 1 ... ( N - 1 ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
| 103 | 102 | adantl | |- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
| 104 | 90 103 | remulcld | |- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) e. RR ) |
| 105 | 62 104 | fsumrecl | |- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) e. RR ) |
| 106 | eqid | |- ( i e. NN |-> ( ( 1 / ( ( 2 x. i ) + 1 ) ) x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) ^ ( 2 x. i ) ) ) ) = ( i e. NN |-> ( ( 1 / ( ( 2 x. i ) + 1 ) ) x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) ^ ( 2 x. i ) ) ) ) |
|
| 107 | eqid | |- ( i e. NN |-> ( ( 1 / ( ( ( 2 x. j ) + 1 ) ^ 2 ) ) ^ i ) ) = ( i e. NN |-> ( ( 1 / ( ( ( 2 x. j ) + 1 ) ^ 2 ) ) ^ i ) ) |
|
| 108 | 1 2 106 107 | stirlinglem10 | |- ( j e. NN -> ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
| 109 | 64 108 | syl | |- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
| 110 | 62 88 104 109 | fsumle | |- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
| 111 | 62 103 | fsumrecl | |- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
| 112 | 1red | |- ( N e. NN -> 1 e. RR ) |
|
| 113 | 4pos | |- 0 < 4 |
|
| 114 | 28 113 | elrpii | |- 4 e. RR+ |
| 115 | 114 | a1i | |- ( N e. NN -> 4 e. RR+ ) |
| 116 | 0red | |- ( N e. NN -> 0 e. RR ) |
|
| 117 | 0lt1 | |- 0 < 1 |
|
| 118 | 117 | a1i | |- ( N e. NN -> 0 < 1 ) |
| 119 | 116 112 118 | ltled | |- ( N e. NN -> 0 <_ 1 ) |
| 120 | 112 115 119 | divge0d | |- ( N e. NN -> 0 <_ ( 1 / 4 ) ) |
| 121 | eqid | |- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
|
| 122 | eluznn | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. NN ) |
|
| 123 | 3 | a1i | |- ( j e. NN -> F = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) |
| 124 | simpr | |- ( ( j e. NN /\ n = j ) -> n = j ) |
|
| 125 | 124 | oveq1d | |- ( ( j e. NN /\ n = j ) -> ( n + 1 ) = ( j + 1 ) ) |
| 126 | 124 125 | oveq12d | |- ( ( j e. NN /\ n = j ) -> ( n x. ( n + 1 ) ) = ( j x. ( j + 1 ) ) ) |
| 127 | 126 | oveq2d | |- ( ( j e. NN /\ n = j ) -> ( 1 / ( n x. ( n + 1 ) ) ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 128 | id | |- ( j e. NN -> j e. NN ) |
|
| 129 | nnre | |- ( j e. NN -> j e. RR ) |
|
| 130 | 1red | |- ( j e. NN -> 1 e. RR ) |
|
| 131 | 129 130 | readdcld | |- ( j e. NN -> ( j + 1 ) e. RR ) |
| 132 | 129 131 | remulcld | |- ( j e. NN -> ( j x. ( j + 1 ) ) e. RR ) |
| 133 | nncn | |- ( j e. NN -> j e. CC ) |
|
| 134 | 1cnd | |- ( j e. NN -> 1 e. CC ) |
|
| 135 | 133 134 | addcld | |- ( j e. NN -> ( j + 1 ) e. CC ) |
| 136 | nnne0 | |- ( j e. NN -> j =/= 0 ) |
|
| 137 | 133 135 136 99 | mulne0d | |- ( j e. NN -> ( j x. ( j + 1 ) ) =/= 0 ) |
| 138 | 132 137 | rereccld | |- ( j e. NN -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
| 139 | 123 127 128 138 | fvmptd | |- ( j e. NN -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 140 | 122 139 | syl | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 141 | 122 | nnred | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. RR ) |
| 142 | 1red | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 1 e. RR ) |
|
| 143 | 141 142 | readdcld | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) e. RR ) |
| 144 | 141 143 | remulcld | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j x. ( j + 1 ) ) e. RR ) |
| 145 | 141 | recnd | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. CC ) |
| 146 | 1cnd | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 1 e. CC ) |
|
| 147 | 145 146 | addcld | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) e. CC ) |
| 148 | 122 | nnne0d | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j =/= 0 ) |
| 149 | 122 99 | syl | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) =/= 0 ) |
| 150 | 145 147 148 149 | mulne0d | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j x. ( j + 1 ) ) =/= 0 ) |
| 151 | 144 150 | rereccld | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
| 152 | seqeq1 | |- ( N = 1 -> seq N ( + , F ) = seq 1 ( + , F ) ) |
|
| 153 | 3 | trireciplem | |- seq 1 ( + , F ) ~~> 1 |
| 154 | climrel | |- Rel ~~> |
|
| 155 | 154 | releldmi | |- ( seq 1 ( + , F ) ~~> 1 -> seq 1 ( + , F ) e. dom ~~> ) |
| 156 | 153 155 | mp1i | |- ( N = 1 -> seq 1 ( + , F ) e. dom ~~> ) |
| 157 | 152 156 | eqeltrd | |- ( N = 1 -> seq N ( + , F ) e. dom ~~> ) |
| 158 | 157 | adantl | |- ( ( N e. NN /\ N = 1 ) -> seq N ( + , F ) e. dom ~~> ) |
| 159 | simpl | |- ( ( N e. NN /\ -. N = 1 ) -> N e. NN ) |
|
| 160 | simpr | |- ( ( N e. NN /\ -. N = 1 ) -> -. N = 1 ) |
|
| 161 | elnn1uz2 | |- ( N e. NN <-> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) |
|
| 162 | 159 161 | sylib | |- ( ( N e. NN /\ -. N = 1 ) -> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) |
| 163 | 162 | ord | |- ( ( N e. NN /\ -. N = 1 ) -> ( -. N = 1 -> N e. ( ZZ>= ` 2 ) ) ) |
| 164 | 160 163 | mpd | |- ( ( N e. NN /\ -. N = 1 ) -> N e. ( ZZ>= ` 2 ) ) |
| 165 | uz2m1nn | |- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
|
| 166 | 164 165 | syl | |- ( ( N e. NN /\ -. N = 1 ) -> ( N - 1 ) e. NN ) |
| 167 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 168 | 167 | adantr | |- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> N e. CC ) |
| 169 | 1cnd | |- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> 1 e. CC ) |
|
| 170 | 168 169 | npcand | |- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> ( ( N - 1 ) + 1 ) = N ) |
| 171 | 170 | eqcomd | |- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> N = ( ( N - 1 ) + 1 ) ) |
| 172 | 171 | seqeq1d | |- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq N ( + , F ) = seq ( ( N - 1 ) + 1 ) ( + , F ) ) |
| 173 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 174 | id | |- ( ( N - 1 ) e. NN -> ( N - 1 ) e. NN ) |
|
| 175 | 138 | recnd | |- ( j e. NN -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
| 176 | 139 175 | eqeltrd | |- ( j e. NN -> ( F ` j ) e. CC ) |
| 177 | 176 | adantl | |- ( ( ( N - 1 ) e. NN /\ j e. NN ) -> ( F ` j ) e. CC ) |
| 178 | 153 | a1i | |- ( ( N - 1 ) e. NN -> seq 1 ( + , F ) ~~> 1 ) |
| 179 | 173 174 177 178 | clim2ser | |- ( ( N - 1 ) e. NN -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) ) |
| 180 | 179 | adantl | |- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) ) |
| 181 | 172 180 | eqbrtrd | |- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq N ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) ) |
| 182 | 154 | releldmi | |- ( seq N ( + , F ) ~~> ( 1 - ( seq 1 ( + , F ) ` ( N - 1 ) ) ) -> seq N ( + , F ) e. dom ~~> ) |
| 183 | 181 182 | syl | |- ( ( N e. NN /\ ( N - 1 ) e. NN ) -> seq N ( + , F ) e. dom ~~> ) |
| 184 | 159 166 183 | syl2anc | |- ( ( N e. NN /\ -. N = 1 ) -> seq N ( + , F ) e. dom ~~> ) |
| 185 | 158 184 | pm2.61dan | |- ( N e. NN -> seq N ( + , F ) e. dom ~~> ) |
| 186 | 121 57 140 151 185 | isumrecl | |- ( N e. NN -> sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
| 187 | 122 | nnrpd | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> j e. RR+ ) |
| 188 | 187 | rpge0d | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 0 <_ j ) |
| 189 | 141 188 | ge0p1rpd | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j + 1 ) e. RR+ ) |
| 190 | 187 189 | rpmulcld | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> ( j x. ( j + 1 ) ) e. RR+ ) |
| 191 | 119 | adantr | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 0 <_ 1 ) |
| 192 | 142 190 191 | divge0d | |- ( ( N e. NN /\ j e. ( ZZ>= ` N ) ) -> 0 <_ ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 193 | 121 57 140 151 185 192 | isumge0 | |- ( N e. NN -> 0 <_ sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 194 | 116 186 111 193 | leadd2dd | |- ( N e. NN -> ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + 0 ) <_ ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
| 195 | 111 | recnd | |- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
| 196 | 195 | addridd | |- ( N e. NN -> ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + 0 ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 197 | 196 | eqcomd | |- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) = ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + 0 ) ) |
| 198 | id | |- ( N e. NN -> N e. NN ) |
|
| 199 | 139 | adantl | |- ( ( N e. NN /\ j e. NN ) -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 200 | 133 | adantl | |- ( ( N e. NN /\ j e. NN ) -> j e. CC ) |
| 201 | 1cnd | |- ( ( N e. NN /\ j e. NN ) -> 1 e. CC ) |
|
| 202 | 200 201 | addcld | |- ( ( N e. NN /\ j e. NN ) -> ( j + 1 ) e. CC ) |
| 203 | 200 202 | mulcld | |- ( ( N e. NN /\ j e. NN ) -> ( j x. ( j + 1 ) ) e. CC ) |
| 204 | 136 | adantl | |- ( ( N e. NN /\ j e. NN ) -> j =/= 0 ) |
| 205 | 99 | adantl | |- ( ( N e. NN /\ j e. NN ) -> ( j + 1 ) =/= 0 ) |
| 206 | 200 202 204 205 | mulne0d | |- ( ( N e. NN /\ j e. NN ) -> ( j x. ( j + 1 ) ) =/= 0 ) |
| 207 | 203 206 | reccld | |- ( ( N e. NN /\ j e. NN ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
| 208 | 153 155 | mp1i | |- ( N e. NN -> seq 1 ( + , F ) e. dom ~~> ) |
| 209 | 173 121 198 199 207 208 | isumsplit | |- ( N e. NN -> sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) = ( sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) + sum_ j e. ( ZZ>= ` N ) ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
| 210 | 194 197 209 | 3brtr4d | |- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) <_ sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 211 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 212 | 139 | adantl | |- ( ( T. /\ j e. NN ) -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 213 | 175 | adantl | |- ( ( T. /\ j e. NN ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
| 214 | 153 | a1i | |- ( T. -> seq 1 ( + , F ) ~~> 1 ) |
| 215 | 173 211 212 213 214 | isumclim | |- ( T. -> sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) = 1 ) |
| 216 | 215 | mptru | |- sum_ j e. NN ( 1 / ( j x. ( j + 1 ) ) ) = 1 |
| 217 | 210 216 | breqtrdi | |- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) <_ 1 ) |
| 218 | 111 112 31 120 217 | lemul2ad | |- ( N e. NN -> ( ( 1 / 4 ) x. sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) ) <_ ( ( 1 / 4 ) x. 1 ) ) |
| 219 | 4cn | |- 4 e. CC |
|
| 220 | 219 | a1i | |- ( N e. NN -> 4 e. CC ) |
| 221 | 113 | a1i | |- ( N e. NN -> 0 < 4 ) |
| 222 | 221 | gt0ne0d | |- ( N e. NN -> 4 =/= 0 ) |
| 223 | 220 222 | reccld | |- ( N e. NN -> ( 1 / 4 ) e. CC ) |
| 224 | 103 | recnd | |- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
| 225 | 62 223 224 | fsummulc2 | |- ( N e. NN -> ( ( 1 / 4 ) x. sum_ j e. ( 1 ... ( N - 1 ) ) ( 1 / ( j x. ( j + 1 ) ) ) ) = sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) ) |
| 226 | 223 | mulridd | |- ( N e. NN -> ( ( 1 / 4 ) x. 1 ) = ( 1 / 4 ) ) |
| 227 | 218 225 226 | 3brtr3d | |- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( 1 / 4 ) x. ( 1 / ( j x. ( j + 1 ) ) ) ) <_ ( 1 / 4 ) ) |
| 228 | 89 105 31 110 227 | letrd | |- ( N e. NN -> sum_ j e. ( 1 ... ( N - 1 ) ) ( ( B ` j ) - ( B ` ( j + 1 ) ) ) <_ ( 1 / 4 ) ) |
| 229 | 61 228 | eqbrtrd | |- ( N e. NN -> ( ( B ` 1 ) - ( B ` N ) ) <_ ( 1 / 4 ) ) |
| 230 | 18 27 31 229 | subled | |- ( N e. NN -> ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` N ) ) |