This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumrecl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumrecl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumrecl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumrecl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | ||
| isumrecl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| isumge0.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐴 ) | ||
| Assertion | isumge0 | ⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝑍 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumrecl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumrecl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumrecl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 4 | isumrecl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | |
| 5 | isumrecl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 6 | isumge0.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐴 ) | |
| 7 | 4 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 8 | 1 2 3 7 5 | isumclim2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑍 𝐴 ) |
| 9 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 10 | 9 | cbvsumv | ⊢ Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) = Σ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) |
| 11 | 3 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑍 𝐴 ) |
| 12 | 10 11 | eqtrid | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) = Σ 𝑘 ∈ 𝑍 𝐴 ) |
| 13 | 8 12 | breqtrrd | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ) |
| 14 | 3 4 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 15 | 6 3 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 16 | 1 2 13 14 15 | iserge0 | ⊢ ( 𝜑 → 0 ≤ Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ) |
| 17 | 16 12 | breqtrd | ⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝑍 𝐴 ) |