This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bound for any B(N)-B(N + 1) that will allow to find a lower bound for the whole B sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem10.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| stirlinglem10.2 | ⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | ||
| stirlinglem10.4 | ⊢ 𝐾 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) ) | ||
| stirlinglem10.5 | ⊢ 𝐿 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) ) | ||
| Assertion | stirlinglem10 | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 𝑁 ) − ( 𝐵 ‘ ( 𝑁 + 1 ) ) ) ≤ ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem10.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| 2 | stirlinglem10.2 | ⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 3 | stirlinglem10.4 | ⊢ 𝐾 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) ) | |
| 4 | stirlinglem10.5 | ⊢ 𝐿 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) ) | |
| 5 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 6 | 1zzd | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℤ ) | |
| 7 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) ) | |
| 8 | 1 2 7 3 | stirlinglem9 | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ⇝ ( ( 𝐵 ‘ 𝑁 ) − ( 𝐵 ‘ ( 𝑁 + 1 ) ) ) ) |
| 9 | 2cnd | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) | |
| 10 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 11 | 9 10 | mulcld | ⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℂ ) |
| 12 | 1cnd | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) | |
| 13 | 11 12 | addcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
| 14 | 13 | sqcld | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ) |
| 15 | 0red | ⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) | |
| 16 | 1red | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) | |
| 17 | 2re | ⊢ 2 ∈ ℝ | |
| 18 | 17 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
| 19 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 20 | 18 19 | remulcld | ⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ ) |
| 21 | 20 16 | readdcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ ) |
| 22 | 0lt1 | ⊢ 0 < 1 | |
| 23 | 22 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
| 24 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 25 | 24 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ+ ) |
| 26 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 27 | 25 26 | rpmulcld | ⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ+ ) |
| 28 | 16 27 | ltaddrp2d | ⊢ ( 𝑁 ∈ ℕ → 1 < ( ( 2 · 𝑁 ) + 1 ) ) |
| 29 | 15 16 21 23 28 | lttrd | ⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 2 · 𝑁 ) + 1 ) ) |
| 30 | 29 | gt0ne0d | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
| 31 | 2z | ⊢ 2 ∈ ℤ | |
| 32 | 31 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℤ ) |
| 33 | 13 30 32 | expne0d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) |
| 34 | 14 33 | reccld | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
| 35 | 16 | renegcld | ⊢ ( 𝑁 ∈ ℕ → - 1 ∈ ℝ ) |
| 36 | 21 | resqcld | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℝ ) |
| 37 | 36 33 | rereccld | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℝ ) |
| 38 | 1re | ⊢ 1 ∈ ℝ | |
| 39 | lt0neg2 | ⊢ ( 1 ∈ ℝ → ( 0 < 1 ↔ - 1 < 0 ) ) | |
| 40 | 38 39 | ax-mp | ⊢ ( 0 < 1 ↔ - 1 < 0 ) |
| 41 | 23 40 | sylib | ⊢ ( 𝑁 ∈ ℕ → - 1 < 0 ) |
| 42 | 21 30 | sqgt0d | ⊢ ( 𝑁 ∈ ℕ → 0 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) |
| 43 | 36 42 | recgt0d | ⊢ ( 𝑁 ∈ ℕ → 0 < ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 44 | 35 15 37 41 43 | lttrd | ⊢ ( 𝑁 ∈ ℕ → - 1 < ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 45 | 2nn | ⊢ 2 ∈ ℕ | |
| 46 | 45 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ ) |
| 47 | expgt1 | ⊢ ( ( ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ ∧ 2 ∈ ℕ ∧ 1 < ( ( 2 · 𝑁 ) + 1 ) ) → 1 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) | |
| 48 | 21 46 28 47 | syl3anc | ⊢ ( 𝑁 ∈ ℕ → 1 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) |
| 49 | 36 42 | elrpd | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) |
| 50 | 49 | recgt1d | ⊢ ( 𝑁 ∈ ℕ → ( 1 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↔ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) < 1 ) ) |
| 51 | 48 50 | mpbid | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) < 1 ) |
| 52 | 37 16 | absltd | ⊢ ( 𝑁 ∈ ℕ → ( ( abs ‘ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) < 1 ↔ ( - 1 < ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∧ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) < 1 ) ) ) |
| 53 | 44 51 52 | mpbir2and | ⊢ ( 𝑁 ∈ ℕ → ( abs ‘ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) < 1 ) |
| 54 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 55 | 54 | a1i | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℕ0 ) |
| 56 | 4 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → 𝐿 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) ) ) |
| 57 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑘 = 𝑗 ) → 𝑘 = 𝑗 ) | |
| 58 | 57 | oveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑘 = 𝑗 ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑗 ) ) |
| 59 | elnnuz | ⊢ ( 𝑗 ∈ ℕ ↔ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 60 | 59 | biimpri | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) → 𝑗 ∈ ℕ ) |
| 61 | 60 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑗 ∈ ℕ ) |
| 62 | 34 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
| 63 | 61 | nnnn0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑗 ∈ ℕ0 ) |
| 64 | 62 63 | expcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑗 ) ∈ ℂ ) |
| 65 | 56 58 61 64 | fvmptd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → ( 𝐿 ‘ 𝑗 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑗 ) ) |
| 66 | 34 53 55 65 | geolim2 | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐿 ) ⇝ ( ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) / ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) ) |
| 67 | 34 | exp1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) = ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 68 | 14 33 | dividd | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = 1 ) |
| 69 | 68 | eqcomd | ⊢ ( 𝑁 ∈ ℕ → 1 = ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 70 | 69 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) |
| 71 | 49 | rpcnne0d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ∧ ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) ) |
| 72 | divsubdir | ⊢ ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ∧ ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) ) → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) | |
| 73 | 14 12 71 72 | syl3anc | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) |
| 74 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 75 | binom2 | ⊢ ( ( ( 2 · 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) = ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) ) | |
| 76 | 11 74 75 | sylancl | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) = ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) ) |
| 77 | 76 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) = ( ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) − 1 ) ) |
| 78 | 9 10 | sqmuld | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) ) |
| 79 | sq2 | ⊢ ( 2 ↑ 2 ) = 4 | |
| 80 | 79 | a1i | ⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 2 ) = 4 ) |
| 81 | 80 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) = ( 4 · ( 𝑁 ↑ 2 ) ) ) |
| 82 | 78 81 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) ↑ 2 ) = ( 4 · ( 𝑁 ↑ 2 ) ) ) |
| 83 | 11 | mulridd | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) · 1 ) = ( 2 · 𝑁 ) ) |
| 84 | 83 | oveq2d | ⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) = ( 2 · ( 2 · 𝑁 ) ) ) |
| 85 | 9 9 10 | mulassd | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 2 ) · 𝑁 ) = ( 2 · ( 2 · 𝑁 ) ) ) |
| 86 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 87 | 86 | a1i | ⊢ ( 𝑁 ∈ ℕ → ( 2 · 2 ) = 4 ) |
| 88 | 87 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 2 ) · 𝑁 ) = ( 4 · 𝑁 ) ) |
| 89 | 84 85 88 | 3eqtr2d | ⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) = ( 4 · 𝑁 ) ) |
| 90 | 82 89 | oveq12d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) = ( ( 4 · ( 𝑁 ↑ 2 ) ) + ( 4 · 𝑁 ) ) ) |
| 91 | 4cn | ⊢ 4 ∈ ℂ | |
| 92 | 91 | a1i | ⊢ ( 𝑁 ∈ ℕ → 4 ∈ ℂ ) |
| 93 | 10 | sqcld | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℂ ) |
| 94 | 92 93 10 | adddid | ⊢ ( 𝑁 ∈ ℕ → ( 4 · ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) = ( ( 4 · ( 𝑁 ↑ 2 ) ) + ( 4 · 𝑁 ) ) ) |
| 95 | 10 | sqvald | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) = ( 𝑁 · 𝑁 ) ) |
| 96 | 10 | mulridd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · 1 ) = 𝑁 ) |
| 97 | 96 | eqcomd | ⊢ ( 𝑁 ∈ ℕ → 𝑁 = ( 𝑁 · 1 ) ) |
| 98 | 95 97 | oveq12d | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 ↑ 2 ) + 𝑁 ) = ( ( 𝑁 · 𝑁 ) + ( 𝑁 · 1 ) ) ) |
| 99 | 10 10 12 | adddid | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · ( 𝑁 + 1 ) ) = ( ( 𝑁 · 𝑁 ) + ( 𝑁 · 1 ) ) ) |
| 100 | 98 99 | eqtr4d | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 ↑ 2 ) + 𝑁 ) = ( 𝑁 · ( 𝑁 + 1 ) ) ) |
| 101 | 100 | oveq2d | ⊢ ( 𝑁 ∈ ℕ → ( 4 · ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
| 102 | 90 94 101 | 3eqtr2d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
| 103 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 104 | 103 | a1i | ⊢ ( 𝑁 ∈ ℕ → ( 1 ↑ 2 ) = 1 ) |
| 105 | 102 104 | oveq12d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) = ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) + 1 ) ) |
| 106 | 105 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) − 1 ) = ( ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) + 1 ) − 1 ) ) |
| 107 | 10 12 | addcld | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℂ ) |
| 108 | 10 107 | mulcld | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 109 | 92 108 | mulcld | ⊢ ( 𝑁 ∈ ℕ → ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
| 110 | 109 12 | pncand | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) + 1 ) − 1 ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
| 111 | 77 106 110 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
| 112 | 111 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 113 | 70 73 112 | 3eqtr2d | ⊢ ( 𝑁 ∈ ℕ → ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 114 | 67 113 | oveq12d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) / ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) |
| 115 | 4pos | ⊢ 0 < 4 | |
| 116 | 115 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 < 4 ) |
| 117 | 116 | gt0ne0d | ⊢ ( 𝑁 ∈ ℕ → 4 ≠ 0 ) |
| 118 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 119 | 19 16 | readdcld | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ ) |
| 120 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 121 | 19 | ltp1d | ⊢ ( 𝑁 ∈ ℕ → 𝑁 < ( 𝑁 + 1 ) ) |
| 122 | 15 19 119 120 121 | lttrd | ⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 + 1 ) ) |
| 123 | 122 | gt0ne0d | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ≠ 0 ) |
| 124 | 10 107 118 123 | mulne0d | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · ( 𝑁 + 1 ) ) ≠ 0 ) |
| 125 | 92 108 117 124 | mulne0d | ⊢ ( 𝑁 ∈ ℕ → ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ≠ 0 ) |
| 126 | 12 14 109 14 33 33 125 | divdivdivd | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( 1 · ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
| 127 | 12 14 | mulcomd | ⊢ ( 𝑁 ∈ ℕ → ( 1 · ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) ) |
| 128 | 127 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 · ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
| 129 | 12 | mulridd | ⊢ ( 𝑁 ∈ ℕ → ( 1 · 1 ) = 1 ) |
| 130 | 129 | eqcomd | ⊢ ( 𝑁 ∈ ℕ → 1 = ( 1 · 1 ) ) |
| 131 | 130 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) = ( ( 1 · 1 ) / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 132 | 12 92 12 108 117 124 | divmuldivd | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) = ( ( 1 · 1 ) / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 133 | 131 132 | eqtr4d | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 134 | 68 133 | oveq12d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) · ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( 1 · ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
| 135 | 14 14 12 109 33 125 | divmuldivd | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) · ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
| 136 | 92 117 | reccld | ⊢ ( 𝑁 ∈ ℕ → ( 1 / 4 ) ∈ ℂ ) |
| 137 | 108 124 | reccld | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
| 138 | 136 137 | mulcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ∈ ℂ ) |
| 139 | 138 | mullidd | ⊢ ( 𝑁 ∈ ℕ → ( 1 · ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 140 | 134 135 139 | 3eqtr3d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 141 | 126 128 140 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 142 | 114 141 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) / ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 143 | 66 142 | breqtrd | ⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐿 ) ⇝ ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 144 | 59 | biimpi | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 145 | 144 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 146 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 2 · 𝑘 ) = ( 2 · 𝑛 ) ) | |
| 147 | 146 | oveq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
| 148 | 147 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 149 | 146 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) |
| 150 | 148 149 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 151 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ ) | |
| 152 | 151 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ ) |
| 153 | 2cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℂ ) | |
| 154 | 152 | nncnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℂ ) |
| 155 | 153 154 | mulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℂ ) |
| 156 | 1cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℂ ) | |
| 157 | 155 156 | addcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
| 158 | 0red | ⊢ ( 𝑛 ∈ ℕ → 0 ∈ ℝ ) | |
| 159 | 1red | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) | |
| 160 | 17 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
| 161 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 162 | 160 161 | remulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 163 | 162 159 | readdcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ ) |
| 164 | 22 | a1i | ⊢ ( 𝑛 ∈ ℕ → 0 < 1 ) |
| 165 | 24 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
| 166 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 167 | 165 166 | rpmulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
| 168 | 159 167 | ltaddrp2d | ⊢ ( 𝑛 ∈ ℕ → 1 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 169 | 158 159 163 164 168 | lttrd | ⊢ ( 𝑛 ∈ ℕ → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 170 | 151 169 | syl | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 171 | 170 | gt0ne0d | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 172 | 171 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 173 | 157 172 | reccld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 174 | 10 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑁 ∈ ℂ ) |
| 175 | 153 174 | mulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑁 ) ∈ ℂ ) |
| 176 | 175 156 | addcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
| 177 | 30 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
| 178 | 176 177 | reccld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
| 179 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 180 | 179 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℕ0 ) |
| 181 | 152 | nnnn0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ0 ) |
| 182 | 180 181 | nn0mulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 183 | 178 182 | expcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 184 | 173 183 | mulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ∈ ℂ ) |
| 185 | 3 150 152 184 | fvmptd3 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 186 | 185 | adantlr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 187 | 169 | gt0ne0d | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 188 | 163 187 | rereccld | ⊢ ( 𝑛 ∈ ℕ → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 189 | 151 188 | syl | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 190 | 189 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 191 | 21 30 | rereccld | ⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℝ ) |
| 192 | 191 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℝ ) |
| 193 | 192 182 | reexpcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ∈ ℝ ) |
| 194 | 193 | adantlr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ∈ ℝ ) |
| 195 | 190 194 | remulcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ∈ ℝ ) |
| 196 | 186 195 | eqeltrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) ∈ ℝ ) |
| 197 | readdcl | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ ) → ( 𝑛 + 𝑖 ) ∈ ℝ ) | |
| 198 | 197 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ ) ) → ( 𝑛 + 𝑖 ) ∈ ℝ ) |
| 199 | 145 196 198 | seqcl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐾 ) ‘ 𝑗 ) ∈ ℝ ) |
| 200 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) | |
| 201 | 34 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
| 202 | 201 181 | expcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ∈ ℂ ) |
| 203 | 4 200 152 202 | fvmptd3 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐿 ‘ 𝑛 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
| 204 | 37 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℝ ) |
| 205 | 204 181 | reexpcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ∈ ℝ ) |
| 206 | 203 205 | eqeltrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐿 ‘ 𝑛 ) ∈ ℝ ) |
| 207 | 206 | adantlr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐿 ‘ 𝑛 ) ∈ ℝ ) |
| 208 | 145 207 198 | seqcl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐿 ) ‘ 𝑗 ) ∈ ℝ ) |
| 209 | 31 | a1i | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 2 ∈ ℤ ) |
| 210 | elfzelz | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℤ ) | |
| 211 | 209 210 | zmulcld | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 2 · 𝑛 ) ∈ ℤ ) |
| 212 | 1exp | ⊢ ( ( 2 · 𝑛 ) ∈ ℤ → ( 1 ↑ ( 2 · 𝑛 ) ) = 1 ) | |
| 213 | 211 212 | syl | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 ↑ ( 2 · 𝑛 ) ) = 1 ) |
| 214 | 1exp | ⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) | |
| 215 | 210 214 | syl | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 ↑ 𝑛 ) = 1 ) |
| 216 | 213 215 | eqtr4d | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 ↑ ( 2 · 𝑛 ) ) = ( 1 ↑ 𝑛 ) ) |
| 217 | 216 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 ↑ ( 2 · 𝑛 ) ) = ( 1 ↑ 𝑛 ) ) |
| 218 | 176 181 180 | expmuld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↑ 𝑛 ) ) |
| 219 | 217 218 | oveq12d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 ↑ ( 2 · 𝑛 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) = ( ( 1 ↑ 𝑛 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↑ 𝑛 ) ) ) |
| 220 | 156 176 177 182 | expdivd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) = ( ( 1 ↑ ( 2 · 𝑛 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 221 | 176 | sqcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ) |
| 222 | 31 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℤ ) |
| 223 | 176 177 222 | expne0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) |
| 224 | 156 221 223 181 | expdivd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) = ( ( 1 ↑ 𝑛 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↑ 𝑛 ) ) ) |
| 225 | 219 220 224 | 3eqtr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
| 226 | 225 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ) |
| 227 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 228 | 227 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℝ+ ) |
| 229 | 17 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℝ ) |
| 230 | 152 | nnred | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℝ ) |
| 231 | 229 230 | remulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℝ ) |
| 232 | 180 | nn0ge0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 2 ) |
| 233 | 181 | nn0ge0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 𝑛 ) |
| 234 | 229 230 232 233 | mulge0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ ( 2 · 𝑛 ) ) |
| 235 | 231 234 | ge0p1rpd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ+ ) |
| 236 | 1red | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℝ ) | |
| 237 | 228 | rpge0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 1 ) |
| 238 | 159 163 168 | ltled | ⊢ ( 𝑛 ∈ ℕ → 1 ≤ ( ( 2 · 𝑛 ) + 1 ) ) |
| 239 | 151 238 | syl | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 1 ≤ ( ( 2 · 𝑛 ) + 1 ) ) |
| 240 | 239 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ≤ ( ( 2 · 𝑛 ) + 1 ) ) |
| 241 | 228 235 236 237 240 | lediv2ad | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ≤ ( 1 / 1 ) ) |
| 242 | 156 | div1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / 1 ) = 1 ) |
| 243 | 241 242 | breqtrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ≤ 1 ) |
| 244 | 152 188 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 245 | 19 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑁 ∈ ℝ ) |
| 246 | 229 245 | remulcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑁 ) ∈ ℝ ) |
| 247 | 15 19 120 | ltled | ⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
| 248 | 247 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 𝑁 ) |
| 249 | 229 245 232 248 | mulge0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ ( 2 · 𝑁 ) ) |
| 250 | 246 249 | ge0p1rpd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ+ ) |
| 251 | 250 222 | rpexpcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) |
| 252 | 251 | rpreccld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℝ+ ) |
| 253 | 210 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℤ ) |
| 254 | 252 253 | rpexpcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ∈ ℝ+ ) |
| 255 | 244 236 254 | lemul1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ≤ 1 ↔ ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ≤ ( 1 · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ) ) |
| 256 | 243 255 | mpbid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ≤ ( 1 · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ) |
| 257 | 202 | mullidd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
| 258 | 256 257 | breqtrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ≤ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
| 259 | 226 258 | eqbrtrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ≤ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
| 260 | 259 185 203 | 3brtr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) ≤ ( 𝐿 ‘ 𝑛 ) ) |
| 261 | 260 | adantlr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) ≤ ( 𝐿 ‘ 𝑛 ) ) |
| 262 | 145 196 207 261 | serle | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐾 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐿 ) ‘ 𝑗 ) ) |
| 263 | 5 6 8 143 199 208 262 | climle | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 𝑁 ) − ( 𝐵 ‘ ( 𝑁 + 1 ) ) ) ≤ ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |