This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| fvmptf.2 | ⊢ Ⅎ 𝑥 𝐶 | ||
| fvmptf.3 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | ||
| fvmptf.4 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | ||
| Assertion | fvmptf | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | fvmptf.2 | ⊢ Ⅎ 𝑥 𝐶 | |
| 3 | fvmptf.3 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| 4 | fvmptf.4 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | |
| 5 | 2 | nfel1 | ⊢ Ⅎ 𝑥 𝐶 ∈ V |
| 6 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | |
| 7 | 4 6 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 8 | 7 1 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐴 ) |
| 9 | 8 2 | nfeq | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐴 ) = 𝐶 |
| 10 | 5 9 | nfim | ⊢ Ⅎ 𝑥 ( 𝐶 ∈ V → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| 11 | 3 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ V ↔ 𝐶 ∈ V ) ) |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 13 | 12 3 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = 𝐵 ↔ ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |
| 14 | 11 13 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ V → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ↔ ( 𝐶 ∈ V → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) ) |
| 15 | 4 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 16 | 15 | ex | ⊢ ( 𝑥 ∈ 𝐷 → ( 𝐵 ∈ V → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |
| 17 | 1 10 14 16 | vtoclgaf | ⊢ ( 𝐴 ∈ 𝐷 → ( 𝐶 ∈ V → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |
| 18 | elex | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ V ) | |
| 19 | 17 18 | impel | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |