This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ltadd1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| subled.4 | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ≤ 𝐶 ) | ||
| Assertion | subled | ⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ltadd1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | subled.4 | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ≤ 𝐶 ) | |
| 5 | suble | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ↔ ( 𝐴 − 𝐶 ) ≤ 𝐵 ) ) | |
| 6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ↔ ( 𝐴 − 𝐶 ) ≤ 𝐵 ) ) |
| 7 | 4 6 | mpbid | ⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) ≤ 𝐵 ) |