This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| clim2ser.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| clim2ser.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| clim2ser.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | ||
| Assertion | clim2ser | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( + , 𝐹 ) ⇝ ( 𝐴 − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | clim2ser.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | clim2ser.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 4 | clim2ser.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | |
| 5 | eqid | ⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) | |
| 6 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 7 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | eluzelz | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ℤ ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 11 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 12 | 6 11 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 13 | 1 12 3 | serf | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 14 | 13 2 | ffvelcdmd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
| 15 | seqex | ⊢ seq ( 𝑁 + 1 ) ( + , 𝐹 ) ∈ V | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( + , 𝐹 ) ∈ V ) |
| 17 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 18 | 8 1 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
| 19 | 1 | uztrn2 | ⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ 𝑍 ) |
| 20 | 18 19 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ 𝑍 ) |
| 21 | 17 20 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 22 | addcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 + 𝑥 ) ∈ ℂ ) | |
| 23 | 22 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 + 𝑥 ) ∈ ℂ ) |
| 24 | addass | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑘 + 𝑥 ) + 𝑦 ) = ( 𝑘 + ( 𝑥 + 𝑦 ) ) ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( 𝑘 + 𝑥 ) + 𝑦 ) = ( 𝑘 + ( 𝑥 + 𝑦 ) ) ) |
| 26 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) | |
| 27 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 28 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 29 | 28 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
| 30 | 29 3 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 31 | 30 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 32 | 23 25 26 27 31 | seqsplit | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
| 33 | 32 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 34 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
| 35 | 1 | uztrn2 | ⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 36 | 18 35 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 37 | 36 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 38 | 5 10 37 | serf | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( + , 𝐹 ) : ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⟶ ℂ ) |
| 39 | 38 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 40 | 34 39 | pncan2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) |
| 41 | 33 40 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 42 | 5 10 4 14 16 21 41 | climsubc1 | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( + , 𝐹 ) ⇝ ( 𝐴 − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |