This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | stirlinglem2.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| Assertion | stirlinglem2 | ⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ‘ 𝑁 ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem2.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| 2 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 3 | faccl | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) | |
| 4 | nnrp | ⊢ ( ( ! ‘ 𝑁 ) ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℝ+ ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℝ+ ) |
| 6 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 7 | 6 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ+ ) |
| 8 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 9 | 7 8 | rpmulcld | ⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ+ ) |
| 10 | 9 | rpsqrtcld | ⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ+ ) |
| 11 | epr | ⊢ e ∈ ℝ+ | |
| 12 | 11 | a1i | ⊢ ( 𝑁 ∈ ℕ → e ∈ ℝ+ ) |
| 13 | 8 12 | rpdivcld | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / e ) ∈ ℝ+ ) |
| 14 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 15 | 13 14 | rpexpcld | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / e ) ↑ 𝑁 ) ∈ ℝ+ ) |
| 16 | 10 15 | rpmulcld | ⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ∈ ℝ+ ) |
| 17 | 5 16 | rpdivcld | ⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) |
| 18 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) | |
| 19 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) | |
| 20 | 19 | fveq2d | ⊢ ( 𝑛 = 𝑘 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑘 ) ) ) |
| 21 | oveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 / e ) = ( 𝑘 / e ) ) | |
| 22 | id | ⊢ ( 𝑛 = 𝑘 → 𝑛 = 𝑘 ) | |
| 23 | 21 22 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( 𝑘 / e ) ↑ 𝑘 ) ) |
| 24 | 20 23 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) |
| 25 | 18 24 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 26 | 25 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 27 | 1 26 | eqtri | ⊢ 𝐴 = ( 𝑘 ∈ ℕ ↦ ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 28 | 27 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → 𝐴 = ( 𝑘 ∈ ℕ ↦ ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) ) |
| 29 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑘 = 𝑁 ) → 𝑘 = 𝑁 ) | |
| 30 | 29 | fveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑘 = 𝑁 ) → ( ! ‘ 𝑘 ) = ( ! ‘ 𝑁 ) ) |
| 31 | 29 | oveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑘 = 𝑁 ) → ( 2 · 𝑘 ) = ( 2 · 𝑁 ) ) |
| 32 | 31 | fveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑘 = 𝑁 ) → ( √ ‘ ( 2 · 𝑘 ) ) = ( √ ‘ ( 2 · 𝑁 ) ) ) |
| 33 | 29 | oveq1d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑘 = 𝑁 ) → ( 𝑘 / e ) = ( 𝑁 / e ) ) |
| 34 | 33 29 | oveq12d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑘 = 𝑁 ) → ( ( 𝑘 / e ) ↑ 𝑘 ) = ( ( 𝑁 / e ) ↑ 𝑁 ) ) |
| 35 | 32 34 | oveq12d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑘 = 𝑁 ) → ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) = ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) |
| 36 | 30 35 | oveq12d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑘 = 𝑁 ) → ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) = ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 37 | simpl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → 𝑁 ∈ ℕ ) | |
| 38 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) | |
| 39 | 28 36 37 38 | fvmptd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( 𝐴 ‘ 𝑁 ) = ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 40 | 17 39 | mpdan | ⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ‘ 𝑁 ) = ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 41 | 40 17 | eqeltrd | ⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ‘ 𝑁 ) ∈ ℝ+ ) |