This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: B is decreasing and has a lower bound, then it converges. Since B is log A , in another theorem it is proven that A converges as well. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem13.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| stirlinglem13.2 | ⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | ||
| Assertion | stirlinglem13 | ⊢ ∃ 𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem13.1 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| 2 | stirlinglem13.2 | ⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 | elrnmpt | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑛 ∈ ℕ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 5 | 3 4 | ax-mp | ⊢ ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑛 ∈ ℕ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 6 | simpr | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) → 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 7 | 1 | stirlinglem2 | ⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℝ+ ) |
| 8 | 7 | relogcld | ⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ ) |
| 10 | 6 9 | eqeltrd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) → 𝑦 ∈ ℝ ) |
| 11 | 10 | rexlimiva | ⊢ ( ∃ 𝑛 ∈ ℕ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) → 𝑦 ∈ ℝ ) |
| 12 | 5 11 | sylbi | ⊢ ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ ℝ ) |
| 13 | 12 | ssriv | ⊢ ran 𝐵 ⊆ ℝ |
| 14 | 1nn | ⊢ 1 ∈ ℕ | |
| 15 | 1 | stirlinglem2 | ⊢ ( 1 ∈ ℕ → ( 𝐴 ‘ 1 ) ∈ ℝ+ ) |
| 16 | relogcl | ⊢ ( ( 𝐴 ‘ 1 ) ∈ ℝ+ → ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ ) | |
| 17 | 14 15 16 | mp2b | ⊢ ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ |
| 18 | nfcv | ⊢ Ⅎ 𝑛 1 | |
| 19 | nfcv | ⊢ Ⅎ 𝑛 log | |
| 20 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) | |
| 21 | 1 20 | nfcxfr | ⊢ Ⅎ 𝑛 𝐴 |
| 22 | 21 18 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 1 ) |
| 23 | 19 22 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 1 ) ) |
| 24 | 2fveq3 | ⊢ ( 𝑛 = 1 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) | |
| 25 | 18 23 24 2 | fvmptf | ⊢ ( ( 1 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ ) → ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) |
| 26 | 14 17 25 | mp2an | ⊢ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) |
| 27 | 2fveq3 | ⊢ ( 𝑗 = 1 → ( log ‘ ( 𝐴 ‘ 𝑗 ) ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) | |
| 28 | 27 | rspceeqv | ⊢ ( ( 1 ∈ ℕ ∧ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) → ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 29 | 14 26 28 | mp2an | ⊢ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) |
| 30 | 26 17 | eqeltri | ⊢ ( 𝐵 ‘ 1 ) ∈ ℝ |
| 31 | nfcv | ⊢ Ⅎ 𝑗 ( log ‘ ( 𝐴 ‘ 𝑛 ) ) | |
| 32 | nfcv | ⊢ Ⅎ 𝑛 𝑗 | |
| 33 | 21 32 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑗 ) |
| 34 | 19 33 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑗 ) ) |
| 35 | 2fveq3 | ⊢ ( 𝑛 = 𝑗 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) | |
| 36 | 31 34 35 | cbvmpt | ⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 37 | 2 36 | eqtri | ⊢ 𝐵 = ( 𝑗 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 38 | 37 | elrnmpt | ⊢ ( ( 𝐵 ‘ 1 ) ∈ ℝ → ( ( 𝐵 ‘ 1 ) ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) ) |
| 39 | 30 38 | ax-mp | ⊢ ( ( 𝐵 ‘ 1 ) ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 40 | 29 39 | mpbir | ⊢ ( 𝐵 ‘ 1 ) ∈ ran 𝐵 |
| 41 | 40 | ne0ii | ⊢ ran 𝐵 ≠ ∅ |
| 42 | 4re | ⊢ 4 ∈ ℝ | |
| 43 | 4ne0 | ⊢ 4 ≠ 0 | |
| 44 | 42 43 | rereccli | ⊢ ( 1 / 4 ) ∈ ℝ |
| 45 | 30 44 | resubcli | ⊢ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ∈ ℝ |
| 46 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) | |
| 47 | 1 2 46 | stirlinglem12 | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 48 | 47 | rgen | ⊢ ∀ 𝑗 ∈ ℕ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) |
| 49 | breq1 | ⊢ ( 𝑥 = ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) → ( 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ↔ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) ) | |
| 50 | 49 | ralbidv | ⊢ ( 𝑥 = ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) → ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ↔ ∀ 𝑗 ∈ ℕ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) ) |
| 51 | 50 | rspcev | ⊢ ( ( ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 52 | 45 48 51 | mp2an | ⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) |
| 53 | simpr | ⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → 𝑦 ∈ ran 𝐵 ) | |
| 54 | 8 | rgen | ⊢ ∀ 𝑛 ∈ ℕ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ |
| 55 | 2 | fnmpt | ⊢ ( ∀ 𝑛 ∈ ℕ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ → 𝐵 Fn ℕ ) |
| 56 | fvelrnb | ⊢ ( 𝐵 Fn ℕ → ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) ) | |
| 57 | 54 55 56 | mp2b | ⊢ ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) |
| 58 | 53 57 | sylib | ⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) |
| 59 | nfra1 | ⊢ Ⅎ 𝑗 ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) | |
| 60 | nfv | ⊢ Ⅎ 𝑗 𝑦 ∈ ran 𝐵 | |
| 61 | 59 60 | nfan | ⊢ Ⅎ 𝑗 ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) |
| 62 | nfv | ⊢ Ⅎ 𝑗 𝑥 ≤ 𝑦 | |
| 63 | simp1l | ⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) | |
| 64 | simp2 | ⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → 𝑗 ∈ ℕ ) | |
| 65 | rsp | ⊢ ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) → ( 𝑗 ∈ ℕ → 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) ) | |
| 66 | 63 64 65 | sylc | ⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 67 | simp3 | ⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → ( 𝐵 ‘ 𝑗 ) = 𝑦 ) | |
| 68 | 66 67 | breqtrd | ⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → 𝑥 ≤ 𝑦 ) |
| 69 | 68 | 3exp | ⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → ( 𝑗 ∈ ℕ → ( ( 𝐵 ‘ 𝑗 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) ) |
| 70 | 61 62 69 | rexlimd | ⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → ( ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) |
| 71 | 58 70 | mpd | ⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → 𝑥 ≤ 𝑦 ) |
| 72 | 71 | ralrimiva | ⊢ ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) → ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 ) |
| 73 | 72 | reximi | ⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 ) |
| 74 | 52 73 | ax-mp | ⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 |
| 75 | infrecl | ⊢ ( ( ran 𝐵 ⊆ ℝ ∧ ran 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 ) → inf ( ran 𝐵 , ℝ , < ) ∈ ℝ ) | |
| 76 | 13 41 74 75 | mp3an | ⊢ inf ( ran 𝐵 , ℝ , < ) ∈ ℝ |
| 77 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 78 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 79 | 2 8 | fmpti | ⊢ 𝐵 : ℕ ⟶ ℝ |
| 80 | 79 | a1i | ⊢ ( ⊤ → 𝐵 : ℕ ⟶ ℝ ) |
| 81 | peano2nn | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) | |
| 82 | 1 | a1i | ⊢ ( 𝑗 ∈ ℕ → 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) ) |
| 83 | simpr | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → 𝑛 = ( 𝑗 + 1 ) ) | |
| 84 | 83 | fveq2d | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ! ‘ 𝑛 ) = ( ! ‘ ( 𝑗 + 1 ) ) ) |
| 85 | 83 | oveq2d | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( 2 · 𝑛 ) = ( 2 · ( 𝑗 + 1 ) ) ) |
| 86 | 85 | fveq2d | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ) |
| 87 | 83 | oveq1d | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( 𝑛 / e ) = ( ( 𝑗 + 1 ) / e ) ) |
| 88 | 87 83 | oveq12d | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) |
| 89 | 86 88 | oveq12d | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) |
| 90 | 84 89 | oveq12d | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 91 | 81 | nnnn0d | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 92 | faccl | ⊢ ( ( 𝑗 + 1 ) ∈ ℕ0 → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℕ ) | |
| 93 | nncn | ⊢ ( ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℂ ) | |
| 94 | 91 92 93 | 3syl | ⊢ ( 𝑗 ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 95 | 2cnd | ⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℂ ) | |
| 96 | nncn | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) | |
| 97 | 1cnd | ⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℂ ) | |
| 98 | 96 97 | addcld | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℂ ) |
| 99 | 95 98 | mulcld | ⊢ ( 𝑗 ∈ ℕ → ( 2 · ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 100 | 99 | sqrtcld | ⊢ ( 𝑗 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 101 | ere | ⊢ e ∈ ℝ | |
| 102 | 101 | recni | ⊢ e ∈ ℂ |
| 103 | 102 | a1i | ⊢ ( 𝑗 ∈ ℕ → e ∈ ℂ ) |
| 104 | 0re | ⊢ 0 ∈ ℝ | |
| 105 | epos | ⊢ 0 < e | |
| 106 | 104 105 | gtneii | ⊢ e ≠ 0 |
| 107 | 106 | a1i | ⊢ ( 𝑗 ∈ ℕ → e ≠ 0 ) |
| 108 | 98 103 107 | divcld | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑗 + 1 ) / e ) ∈ ℂ ) |
| 109 | 108 91 | expcld | ⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 110 | 100 109 | mulcld | ⊢ ( 𝑗 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 111 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 112 | 111 | a1i | ⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℝ+ ) |
| 113 | nnre | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) | |
| 114 | 104 | a1i | ⊢ ( 𝑗 ∈ ℕ → 0 ∈ ℝ ) |
| 115 | 1red | ⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℝ ) | |
| 116 | 0le1 | ⊢ 0 ≤ 1 | |
| 117 | 116 | a1i | ⊢ ( 𝑗 ∈ ℕ → 0 ≤ 1 ) |
| 118 | nnge1 | ⊢ ( 𝑗 ∈ ℕ → 1 ≤ 𝑗 ) | |
| 119 | 114 115 113 117 118 | letrd | ⊢ ( 𝑗 ∈ ℕ → 0 ≤ 𝑗 ) |
| 120 | 113 119 | ge0p1rpd | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℝ+ ) |
| 121 | 112 120 | rpmulcld | ⊢ ( 𝑗 ∈ ℕ → ( 2 · ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 122 | 121 | sqrtgt0d | ⊢ ( 𝑗 ∈ ℕ → 0 < ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ) |
| 123 | 122 | gt0ne0d | ⊢ ( 𝑗 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ≠ 0 ) |
| 124 | 81 | nnne0d | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ≠ 0 ) |
| 125 | 98 103 124 107 | divne0d | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑗 + 1 ) / e ) ≠ 0 ) |
| 126 | nnz | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) | |
| 127 | 126 | peano2zd | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℤ ) |
| 128 | 108 125 127 | expne0d | ⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ≠ 0 ) |
| 129 | 100 109 123 128 | mulne0d | ⊢ ( 𝑗 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ≠ 0 ) |
| 130 | 94 110 129 | divcld | ⊢ ( 𝑗 ∈ ℕ → ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℂ ) |
| 131 | 82 90 81 130 | fvmptd | ⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) = ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 132 | nnrp | ⊢ ( ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) | |
| 133 | 91 92 132 | 3syl | ⊢ ( 𝑗 ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 134 | 121 | rpsqrtcld | ⊢ ( 𝑗 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ∈ ℝ+ ) |
| 135 | epr | ⊢ e ∈ ℝ+ | |
| 136 | 135 | a1i | ⊢ ( 𝑗 ∈ ℕ → e ∈ ℝ+ ) |
| 137 | 120 136 | rpdivcld | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑗 + 1 ) / e ) ∈ ℝ+ ) |
| 138 | 137 127 | rpexpcld | ⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 139 | 134 138 | rpmulcld | ⊢ ( 𝑗 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ+ ) |
| 140 | 133 139 | rpdivcld | ⊢ ( 𝑗 ∈ ℕ → ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℝ+ ) |
| 141 | 131 140 | eqeltrd | ⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 142 | 141 | relogcld | ⊢ ( 𝑗 ∈ ℕ → ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 143 | nfcv | ⊢ Ⅎ 𝑛 ( 𝑗 + 1 ) | |
| 144 | 21 143 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ ( 𝑗 + 1 ) ) |
| 145 | 19 144 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) |
| 146 | 2fveq3 | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) | |
| 147 | 143 145 146 2 | fvmptf | ⊢ ( ( ( 𝑗 + 1 ) ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 148 | 81 142 147 | syl2anc | ⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 149 | 148 142 | eqeltrd | ⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 150 | 79 | ffvelcdmi | ⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
| 151 | eqid | ⊢ ( 𝑧 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑧 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑧 ) ) ) ) = ( 𝑧 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑧 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑧 ) ) ) ) | |
| 152 | 1 2 151 | stirlinglem11 | ⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) < ( 𝐵 ‘ 𝑗 ) ) |
| 153 | 149 150 152 | ltled | ⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 154 | 153 | adantl | ⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 155 | 52 | a1i | ⊢ ( ⊤ → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 156 | 77 78 80 154 155 | climinf | ⊢ ( ⊤ → 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) ) |
| 157 | 156 | mptru | ⊢ 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) |
| 158 | breq2 | ⊢ ( 𝑑 = inf ( ran 𝐵 , ℝ , < ) → ( 𝐵 ⇝ 𝑑 ↔ 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) ) ) | |
| 159 | 158 | rspcev | ⊢ ( ( inf ( ran 𝐵 , ℝ , < ) ∈ ℝ ∧ 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) ) → ∃ 𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 ) |
| 160 | 76 157 159 | mp2an | ⊢ ∃ 𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 |