This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for trirecip . Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014) (Revised by Mario Carneiro, 22-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | trireciplem.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) | |
| Assertion | trireciplem | ⊢ seq 1 ( + , 𝐹 ) ⇝ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trireciplem.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) | |
| 2 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 3 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 4 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 5 | nnex | ⊢ ℕ ∈ V | |
| 6 | 5 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ∈ V |
| 7 | 6 | a1i | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ∈ V ) |
| 8 | oveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 + 1 ) = ( 𝑘 + 1 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 1 / ( 𝑛 + 1 ) ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 10 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) | |
| 11 | ovex | ⊢ ( 1 / ( 𝑘 + 1 ) ) ∈ V | |
| 12 | 9 10 11 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 13 | 12 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 14 | 2 3 4 3 7 13 | divcnvshft | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ⇝ 0 ) |
| 15 | seqex | ⊢ seq 1 ( + , 𝐹 ) ∈ V | |
| 16 | 15 | a1i | ⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ∈ V ) |
| 17 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 18 | 17 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 19 | 18 | nnrecred | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 20 | 19 | recnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 21 | 13 20 | eqeltrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 22 | 13 | oveq2d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 − ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ‘ 𝑘 ) ) = ( 1 − ( 1 / ( 𝑘 + 1 ) ) ) ) |
| 23 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℕ ) | |
| 24 | 23 | adantl | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝑗 ∈ ℕ ) |
| 25 | 24 | nncnd | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝑗 ∈ ℂ ) |
| 26 | peano2cn | ⊢ ( 𝑗 ∈ ℂ → ( 𝑗 + 1 ) ∈ ℂ ) | |
| 27 | 25 26 | syl | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 + 1 ) ∈ ℂ ) |
| 28 | peano2nn | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) | |
| 29 | 24 28 | syl | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 30 | 24 29 | nnmulcld | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 31 | 30 | nncnd | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 32 | 30 | nnne0d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 ) |
| 33 | 27 25 31 32 | divsubdird | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑗 + 1 ) − 𝑗 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( ( ( 𝑗 + 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) − ( 𝑗 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 34 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 35 | pncan2 | ⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑗 + 1 ) − 𝑗 ) = 1 ) | |
| 36 | 25 34 35 | sylancl | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 + 1 ) − 𝑗 ) = 1 ) |
| 37 | 36 | oveq1d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑗 + 1 ) − 𝑗 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 38 | 27 | mulridd | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 + 1 ) · 1 ) = ( 𝑗 + 1 ) ) |
| 39 | 27 25 | mulcomd | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 + 1 ) · 𝑗 ) = ( 𝑗 · ( 𝑗 + 1 ) ) ) |
| 40 | 38 39 | oveq12d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑗 + 1 ) · 1 ) / ( ( 𝑗 + 1 ) · 𝑗 ) ) = ( ( 𝑗 + 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 41 | 1cnd | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 1 ∈ ℂ ) | |
| 42 | 24 | nnne0d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝑗 ≠ 0 ) |
| 43 | 29 | nnne0d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 + 1 ) ≠ 0 ) |
| 44 | 41 25 27 42 43 | divcan5d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑗 + 1 ) · 1 ) / ( ( 𝑗 + 1 ) · 𝑗 ) ) = ( 1 / 𝑗 ) ) |
| 45 | 40 44 | eqtr3d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 + 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 1 / 𝑗 ) ) |
| 46 | 25 | mulridd | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 · 1 ) = 𝑗 ) |
| 47 | 46 | oveq1d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 · 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 𝑗 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 48 | 41 27 25 43 42 | divcan5d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑗 · 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 1 / ( 𝑗 + 1 ) ) ) |
| 49 | 47 48 | eqtr3d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 1 / ( 𝑗 + 1 ) ) ) |
| 50 | 45 49 | oveq12d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑗 + 1 ) / ( 𝑗 · ( 𝑗 + 1 ) ) ) − ( 𝑗 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) = ( ( 1 / 𝑗 ) − ( 1 / ( 𝑗 + 1 ) ) ) ) |
| 51 | 33 37 50 | 3eqtr3d | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( ( 1 / 𝑗 ) − ( 1 / ( 𝑗 + 1 ) ) ) ) |
| 52 | 51 | sumeq2dv | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( ( 1 / 𝑗 ) − ( 1 / ( 𝑗 + 1 ) ) ) ) |
| 53 | oveq2 | ⊢ ( 𝑛 = 𝑗 → ( 1 / 𝑛 ) = ( 1 / 𝑗 ) ) | |
| 54 | oveq2 | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( 𝑗 + 1 ) ) ) | |
| 55 | oveq2 | ⊢ ( 𝑛 = 1 → ( 1 / 𝑛 ) = ( 1 / 1 ) ) | |
| 56 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 57 | 55 56 | eqtrdi | ⊢ ( 𝑛 = 1 → ( 1 / 𝑛 ) = 1 ) |
| 58 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( 𝑘 + 1 ) ) ) | |
| 59 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 60 | 59 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
| 61 | 18 2 | eleqtrdi | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 62 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) → 𝑛 ∈ ℕ ) | |
| 63 | 62 | adantl | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ) → 𝑛 ∈ ℕ ) |
| 64 | 63 | nnrecred | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 65 | 64 | recnd | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 66 | 53 54 57 58 60 61 65 | telfsum | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( ( 1 / 𝑗 ) − ( 1 / ( 𝑗 + 1 ) ) ) = ( 1 − ( 1 / ( 𝑘 + 1 ) ) ) ) |
| 67 | 52 66 | eqtrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( 1 − ( 1 / ( 𝑘 + 1 ) ) ) ) |
| 68 | id | ⊢ ( 𝑛 = 𝑗 → 𝑛 = 𝑗 ) | |
| 69 | oveq1 | ⊢ ( 𝑛 = 𝑗 → ( 𝑛 + 1 ) = ( 𝑗 + 1 ) ) | |
| 70 | 68 69 | oveq12d | ⊢ ( 𝑛 = 𝑗 → ( 𝑛 · ( 𝑛 + 1 ) ) = ( 𝑗 · ( 𝑗 + 1 ) ) ) |
| 71 | 70 | oveq2d | ⊢ ( 𝑛 = 𝑗 → ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 72 | ovex | ⊢ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ V | |
| 73 | 71 1 72 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 74 | 24 73 | syl | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 75 | simpr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 76 | 75 2 | eleqtrdi | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 77 | 30 | nnrecred | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 78 | 77 | recnd | ⊢ ( ( ( ⊤ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 79 | 74 76 78 | fsumser | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) |
| 80 | 22 67 79 | 3eqtr2rd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) = ( 1 − ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 + 1 ) ) ) ‘ 𝑘 ) ) ) |
| 81 | 2 3 14 4 16 21 80 | climsubc2 | ⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ⇝ ( 1 − 0 ) ) |
| 82 | 81 | mptru | ⊢ seq 1 ( + , 𝐹 ) ⇝ ( 1 − 0 ) |
| 83 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 84 | 82 83 | breqtri | ⊢ seq 1 ( + , 𝐹 ) ⇝ 1 |