This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telfsumo.1 | ⊢ ( 𝑘 = 𝑗 → 𝐴 = 𝐵 ) | |
| telfsumo.2 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝐴 = 𝐶 ) | ||
| telfsumo.3 | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐷 ) | ||
| telfsumo.4 | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐸 ) | ||
| telfsumo.5 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| telfsumo.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | ||
| Assertion | telfsumo | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 − 𝐶 ) = ( 𝐷 − 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telfsumo.1 | ⊢ ( 𝑘 = 𝑗 → 𝐴 = 𝐵 ) | |
| 2 | telfsumo.2 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝐴 = 𝐶 ) | |
| 3 | telfsumo.3 | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐷 ) | |
| 4 | telfsumo.4 | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐸 ) | |
| 5 | telfsumo.5 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | telfsumo.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 7 | sum0 | ⊢ Σ 𝑗 ∈ ∅ ( 𝐵 − 𝐶 ) = 0 | |
| 8 | 3 | eleq1d | ⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ ) ) |
| 9 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ) |
| 10 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 12 | 8 9 11 | rspcdva | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → 𝐷 ∈ ℂ ) |
| 14 | 13 | subidd | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( 𝐷 − 𝐷 ) = 0 ) |
| 15 | 7 14 | eqtr4id | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → Σ 𝑗 ∈ ∅ ( 𝐵 − 𝐶 ) = ( 𝐷 − 𝐷 ) ) |
| 16 | oveq2 | ⊢ ( 𝑁 = 𝑀 → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ..^ 𝑀 ) ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ..^ 𝑀 ) ) |
| 18 | fzo0 | ⊢ ( 𝑀 ..^ 𝑀 ) = ∅ | |
| 19 | 17 18 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( 𝑀 ..^ 𝑁 ) = ∅ ) |
| 20 | 19 | sumeq1d | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 − 𝐶 ) = Σ 𝑗 ∈ ∅ ( 𝐵 − 𝐶 ) ) |
| 21 | eqeq1 | ⊢ ( 𝑘 = 𝑁 → ( 𝑘 = 𝑀 ↔ 𝑁 = 𝑀 ) ) | |
| 22 | 4 | eqeq1d | ⊢ ( 𝑘 = 𝑁 → ( 𝐴 = 𝐷 ↔ 𝐸 = 𝐷 ) ) |
| 23 | 21 22 | imbi12d | ⊢ ( 𝑘 = 𝑁 → ( ( 𝑘 = 𝑀 → 𝐴 = 𝐷 ) ↔ ( 𝑁 = 𝑀 → 𝐸 = 𝐷 ) ) ) |
| 24 | 23 3 | vtoclg | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 → 𝐸 = 𝐷 ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 = 𝑀 ) → 𝐸 = 𝐷 ) |
| 26 | 5 25 | sylan | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → 𝐸 = 𝐷 ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( 𝐷 − 𝐸 ) = ( 𝐷 − 𝐷 ) ) |
| 28 | 15 20 27 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 − 𝐶 ) = ( 𝐷 − 𝐸 ) ) |
| 29 | fzofi | ⊢ ( 𝑀 ..^ 𝑁 ) ∈ Fin | |
| 30 | 29 | a1i | ⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) ∈ Fin ) |
| 31 | 1 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( 𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
| 32 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ) |
| 33 | elfzofz | ⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 34 | 33 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) |
| 35 | 31 32 34 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐵 ∈ ℂ ) |
| 36 | 2 | eleq1d | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 37 | fzofzp1 | ⊢ ( 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑗 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 38 | 37 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑗 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 39 | 36 32 38 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐶 ∈ ℂ ) |
| 40 | 30 35 39 | fsumsub | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 − 𝐶 ) = ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐵 − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐶 ) ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 − 𝐶 ) = ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐵 − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐶 ) ) |
| 42 | 1 | cbvsumv | ⊢ Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 = Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐵 |
| 43 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 44 | 5 43 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 45 | eluzp1m1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 46 | 44 45 | sylan | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 47 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 48 | 5 47 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑁 ∈ ℤ ) |
| 50 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 51 | 49 50 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 52 | fzossfz | ⊢ ( 𝑀 ..^ 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) | |
| 53 | 51 52 | eqsstrrdi | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 ... ( 𝑁 − 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 54 | 53 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 55 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 56 | 54 55 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 57 | 46 56 3 | fsum1p | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 = ( 𝐷 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) 𝐴 ) ) |
| 58 | 51 | sumeq1d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 ) |
| 59 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 + 1 ) ..^ 𝑁 ) = ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) ) | |
| 60 | 49 59 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑀 + 1 ) ..^ 𝑁 ) = ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) ) |
| 61 | 60 | sumeq1d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) 𝐴 ) |
| 62 | 61 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐷 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) = ( 𝐷 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) 𝐴 ) ) |
| 63 | 57 58 62 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 = ( 𝐷 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) ) |
| 64 | 42 63 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐵 = ( 𝐷 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) ) |
| 65 | simpr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 66 | fzp1ss | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 67 | 44 66 | syl | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 68 | 67 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 69 | 68 6 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 70 | 69 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 71 | 65 70 4 | fsumm1 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) 𝐴 + 𝐸 ) ) |
| 72 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 73 | 44 | peano2zd | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℤ ) |
| 74 | 72 73 48 69 2 | fsumshftm | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 = Σ 𝑗 ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) 𝐶 ) |
| 75 | 44 | zcnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 76 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 77 | pncan | ⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) | |
| 78 | 75 76 77 | sylancl | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 79 | 78 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 80 | 48 50 | syl | ⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 81 | 79 80 | eqtr4d | ⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) = ( 𝑀 ..^ 𝑁 ) ) |
| 82 | 81 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( ( 𝑀 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) 𝐶 = Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐶 ) |
| 83 | 74 82 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 = Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐶 ) |
| 84 | 83 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) 𝐴 = Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐶 ) |
| 85 | 48 59 | syl | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ..^ 𝑁 ) = ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) ) |
| 86 | 85 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) 𝐴 ) |
| 87 | 86 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 + 𝐸 ) = ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) 𝐴 + 𝐸 ) ) |
| 88 | fzofi | ⊢ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∈ Fin | |
| 89 | 88 | a1i | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∈ Fin ) |
| 90 | elfzofz | ⊢ ( 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) → 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) | |
| 91 | 90 69 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 92 | 89 91 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ∈ ℂ ) |
| 93 | 4 | eleq1d | ⊢ ( 𝑘 = 𝑁 → ( 𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ ) ) |
| 94 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 95 | 5 94 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 96 | 93 9 95 | rspcdva | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 97 | 92 96 | addcomd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 + 𝐸 ) = ( 𝐸 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) ) |
| 98 | 87 97 | eqtr3d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) 𝐴 + 𝐸 ) = ( 𝐸 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) ) |
| 99 | 98 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ... ( 𝑁 − 1 ) ) 𝐴 + 𝐸 ) = ( 𝐸 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) ) |
| 100 | 71 84 99 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐶 = ( 𝐸 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) ) |
| 101 | 64 100 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐵 − Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) 𝐶 ) = ( ( 𝐷 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) − ( 𝐸 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) ) ) |
| 102 | 12 96 92 | pnpcan2d | ⊢ ( 𝜑 → ( ( 𝐷 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) − ( 𝐸 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) ) = ( 𝐷 − 𝐸 ) ) |
| 103 | 102 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐷 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) − ( 𝐸 + Σ 𝑘 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) 𝐴 ) ) = ( 𝐷 − 𝐸 ) ) |
| 104 | 41 101 103 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 − 𝐶 ) = ( 𝐷 − 𝐸 ) ) |
| 105 | uzp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) | |
| 106 | 5 105 | syl | ⊢ ( 𝜑 → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 107 | 28 104 106 | mpjaodan | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐵 − 𝐶 ) = ( 𝐷 − 𝐸 ) ) |