This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpgecld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| rpgecld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| divge0d.3 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| Assertion | divge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 / 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | rpgecld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 3 | divge0d.3 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 4 | 2 | rpregt0d | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
| 5 | divge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) ) | |
| 6 | 1 3 4 5 | syl21anc | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 / 𝐵 ) ) |