This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ismbfcn | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 2 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → dom 𝐹 = 𝐴 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol ) ) |
| 4 | 1 3 | imbitrid | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ MblFn → 𝐴 ∈ dom vol ) ) |
| 5 | mbfdm | ⊢ ( ( ℜ ∘ 𝐹 ) ∈ MblFn → dom ( ℜ ∘ 𝐹 ) ∈ dom vol ) | |
| 6 | 5 | adantr | ⊢ ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) → dom ( ℜ ∘ 𝐹 ) ∈ dom vol ) |
| 7 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 8 | fco | ⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ℜ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 10 | 9 | fdmd | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → dom ( ℜ ∘ 𝐹 ) = 𝐴 ) |
| 11 | 10 | eleq1d | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( dom ( ℜ ∘ 𝐹 ) ∈ dom vol ↔ 𝐴 ∈ dom vol ) ) |
| 12 | 6 11 | imbitrid | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) → 𝐴 ∈ dom vol ) ) |
| 13 | ismbf1 | ⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) | |
| 14 | 9 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ dom vol ) → ( ℜ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 15 | ismbf | ⊢ ( ( ℜ ∘ 𝐹 ) : 𝐴 ⟶ ℝ → ( ( ℜ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ dom vol ) → ( ( ℜ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
| 17 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 18 | fco | ⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ℑ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) | |
| 19 | 17 18 | mpan | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ℑ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ dom vol ) → ( ℑ ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 21 | ismbf | ⊢ ( ( ℑ ∘ 𝐹 ) : 𝐴 ⟶ ℝ → ( ( ℑ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ dom vol ) → ( ( ℑ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
| 23 | 16 22 | anbi12d | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ dom vol ) → ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ↔ ( ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ∀ 𝑥 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
| 24 | r19.26 | ⊢ ( ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ↔ ( ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ∀ 𝑥 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) | |
| 25 | 23 24 | bitr4di | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ dom vol ) → ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ↔ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
| 26 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 27 | cnex | ⊢ ℂ ∈ V | |
| 28 | reex | ⊢ ℝ ∈ V | |
| 29 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) | |
| 30 | 27 28 29 | mpanl12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 31 | 26 30 | sylan2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ dom vol ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 32 | 31 | biantrurd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ dom vol ) → ( ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) ) |
| 33 | 25 32 | bitrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ dom vol ) → ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) ) |
| 34 | 13 33 | bitr4id | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ dom vol ) → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
| 35 | 34 | ex | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐴 ∈ dom vol → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) ) |
| 36 | 4 12 35 | pm5.21ndd | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |