This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse to the canonical bijection from ( RR X. RR ) to CC from cnref1o . (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnrecnv.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) | |
| Assertion | cnrecnv | ⊢ ◡ 𝐹 = ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrecnv.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 2 | 1 | cnref1o | ⊢ 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ |
| 3 | f1ocnv | ⊢ ( 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ → ◡ 𝐹 : ℂ –1-1-onto→ ( ℝ × ℝ ) ) | |
| 4 | f1of | ⊢ ( ◡ 𝐹 : ℂ –1-1-onto→ ( ℝ × ℝ ) → ◡ 𝐹 : ℂ ⟶ ( ℝ × ℝ ) ) | |
| 5 | 2 3 4 | mp2b | ⊢ ◡ 𝐹 : ℂ ⟶ ( ℝ × ℝ ) |
| 6 | 5 | a1i | ⊢ ( ⊤ → ◡ 𝐹 : ℂ ⟶ ( ℝ × ℝ ) ) |
| 7 | 6 | feqmptd | ⊢ ( ⊤ → ◡ 𝐹 = ( 𝑧 ∈ ℂ ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 8 | 7 | mptru | ⊢ ◡ 𝐹 = ( 𝑧 ∈ ℂ ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) |
| 9 | df-ov | ⊢ ( ( ℜ ‘ 𝑧 ) 𝐹 ( ℑ ‘ 𝑧 ) ) = ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) | |
| 10 | recl | ⊢ ( 𝑧 ∈ ℂ → ( ℜ ‘ 𝑧 ) ∈ ℝ ) | |
| 11 | imcl | ⊢ ( 𝑧 ∈ ℂ → ( ℑ ‘ 𝑧 ) ∈ ℝ ) | |
| 12 | oveq1 | ⊢ ( 𝑥 = ( ℜ ‘ 𝑧 ) → ( 𝑥 + ( i · 𝑦 ) ) = ( ( ℜ ‘ 𝑧 ) + ( i · 𝑦 ) ) ) | |
| 13 | oveq2 | ⊢ ( 𝑦 = ( ℑ ‘ 𝑧 ) → ( i · 𝑦 ) = ( i · ( ℑ ‘ 𝑧 ) ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑦 = ( ℑ ‘ 𝑧 ) → ( ( ℜ ‘ 𝑧 ) + ( i · 𝑦 ) ) = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) |
| 15 | ovex | ⊢ ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ∈ V | |
| 16 | 12 14 1 15 | ovmpo | ⊢ ( ( ( ℜ ‘ 𝑧 ) ∈ ℝ ∧ ( ℑ ‘ 𝑧 ) ∈ ℝ ) → ( ( ℜ ‘ 𝑧 ) 𝐹 ( ℑ ‘ 𝑧 ) ) = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) |
| 17 | 10 11 16 | syl2anc | ⊢ ( 𝑧 ∈ ℂ → ( ( ℜ ‘ 𝑧 ) 𝐹 ( ℑ ‘ 𝑧 ) ) = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) |
| 18 | 9 17 | eqtr3id | ⊢ ( 𝑧 ∈ ℂ → ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) |
| 19 | replim | ⊢ ( 𝑧 ∈ ℂ → 𝑧 = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) | |
| 20 | 18 19 | eqtr4d | ⊢ ( 𝑧 ∈ ℂ → ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) = 𝑧 ) |
| 21 | 20 | fveq2d | ⊢ ( 𝑧 ∈ ℂ → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) ) = ( ◡ 𝐹 ‘ 𝑧 ) ) |
| 22 | 10 11 | opelxpd | ⊢ ( 𝑧 ∈ ℂ → 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ∈ ( ℝ × ℝ ) ) |
| 23 | f1ocnvfv1 | ⊢ ( ( 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ ∧ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ∈ ( ℝ × ℝ ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) ) = 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) | |
| 24 | 2 22 23 | sylancr | ⊢ ( 𝑧 ∈ ℂ → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) ) = 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
| 25 | 21 24 | eqtr3d | ⊢ ( 𝑧 ∈ ℂ → ( ◡ 𝐹 ‘ 𝑧 ) = 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
| 26 | 25 | mpteq2ia | ⊢ ( 𝑧 ∈ ℂ ↦ ( ◡ 𝐹 ‘ 𝑧 ) ) = ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
| 27 | 8 26 | eqtri | ⊢ ◡ 𝐹 = ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |