This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | txval.1 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) | |
| Assertion | txbas | ⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → 𝐵 ∈ TopBases ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txval.1 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) | |
| 2 | xpeq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 × 𝑦 ) = ( 𝑎 × 𝑦 ) ) | |
| 3 | xpeq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝑎 × 𝑦 ) = ( 𝑎 × 𝑏 ) ) | |
| 4 | 2 3 | cbvmpov | ⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑎 ∈ 𝑅 , 𝑏 ∈ 𝑆 ↦ ( 𝑎 × 𝑏 ) ) |
| 5 | 4 | rnmpo | ⊢ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = { 𝑢 ∣ ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) } |
| 6 | 1 5 | eqtri | ⊢ 𝐵 = { 𝑢 ∣ ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) } |
| 7 | 6 | eqabri | ⊢ ( 𝑢 ∈ 𝐵 ↔ ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ) |
| 8 | xpeq1 | ⊢ ( 𝑥 = 𝑐 → ( 𝑥 × 𝑦 ) = ( 𝑐 × 𝑦 ) ) | |
| 9 | xpeq2 | ⊢ ( 𝑦 = 𝑑 → ( 𝑐 × 𝑦 ) = ( 𝑐 × 𝑑 ) ) | |
| 10 | 8 9 | cbvmpov | ⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑐 ∈ 𝑅 , 𝑑 ∈ 𝑆 ↦ ( 𝑐 × 𝑑 ) ) |
| 11 | 10 | rnmpo | ⊢ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = { 𝑣 ∣ ∃ 𝑐 ∈ 𝑅 ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) } |
| 12 | 1 11 | eqtri | ⊢ 𝐵 = { 𝑣 ∣ ∃ 𝑐 ∈ 𝑅 ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) } |
| 13 | 12 | eqabri | ⊢ ( 𝑣 ∈ 𝐵 ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) |
| 14 | 7 13 | anbi12i | ⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ↔ ( ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑐 ∈ 𝑅 ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) ) |
| 15 | reeanv | ⊢ ( ∃ 𝑎 ∈ 𝑅 ∃ 𝑐 ∈ 𝑅 ( ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) ↔ ( ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑐 ∈ 𝑅 ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) ) | |
| 16 | 14 15 | bitr4i | ⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ↔ ∃ 𝑎 ∈ 𝑅 ∃ 𝑐 ∈ 𝑅 ( ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) ) |
| 17 | reeanv | ⊢ ( ∃ 𝑏 ∈ 𝑆 ∃ 𝑑 ∈ 𝑆 ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) ↔ ( ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) ) | |
| 18 | basis2 | ⊢ ( ( ( 𝑅 ∈ TopBases ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ) ) → ∃ 𝑥 ∈ 𝑅 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ) | |
| 19 | 18 | exp43 | ⊢ ( 𝑅 ∈ TopBases → ( 𝑎 ∈ 𝑅 → ( 𝑐 ∈ 𝑅 → ( 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) → ∃ 𝑥 ∈ 𝑅 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ) ) ) ) |
| 20 | 19 | imp42 | ⊢ ( ( ( 𝑅 ∈ TopBases ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ) → ∃ 𝑥 ∈ 𝑅 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ) |
| 21 | basis2 | ⊢ ( ( ( 𝑆 ∈ TopBases ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑑 ∈ 𝑆 ∧ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑦 ∈ 𝑆 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) | |
| 22 | 21 | exp43 | ⊢ ( 𝑆 ∈ TopBases → ( 𝑏 ∈ 𝑆 → ( 𝑑 ∈ 𝑆 → ( 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) → ∃ 𝑦 ∈ 𝑆 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) ) ) ) |
| 23 | 22 | imp42 | ⊢ ( ( ( 𝑆 ∈ TopBases ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ∧ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ) → ∃ 𝑦 ∈ 𝑆 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) |
| 24 | reeanv | ⊢ ( ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝑅 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ∃ 𝑦 ∈ 𝑆 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) ) | |
| 25 | opelxpi | ⊢ ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) → 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ) | |
| 26 | xpss12 | ⊢ ( ( 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) → ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) | |
| 27 | 25 26 | anim12i | ⊢ ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ∧ ( 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) → ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 28 | 27 | an4s | ⊢ ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) → ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 29 | 28 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝑆 ( ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 30 | 29 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 31 | 24 30 | sylbir | ⊢ ( ( ∃ 𝑥 ∈ 𝑅 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ∃ 𝑦 ∈ 𝑆 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 32 | 20 23 31 | syl2an | ⊢ ( ( ( ( 𝑅 ∈ TopBases ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ) ∧ ( ( 𝑆 ∈ TopBases ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ∧ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 33 | 32 | an4s | ⊢ ( ( ( ( 𝑅 ∈ TopBases ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ ( 𝑆 ∈ TopBases ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) ∧ ( 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ∧ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 34 | 33 | ralrimivva | ⊢ ( ( ( 𝑅 ∈ TopBases ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ ( 𝑆 ∈ TopBases ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ∀ 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ∀ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 35 | eleq1 | ⊢ ( 𝑝 = 〈 𝑢 , 𝑣 〉 → ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ↔ 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ) ) | |
| 36 | 35 | anbi1d | ⊢ ( 𝑝 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 37 | 36 | 2rexbidv | ⊢ ( 𝑝 = 〈 𝑢 , 𝑣 〉 → ( ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 38 | 37 | ralxp | ⊢ ( ∀ 𝑝 ∈ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∀ 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ∀ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 39 | 34 38 | sylibr | ⊢ ( ( ( 𝑅 ∈ TopBases ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ ( 𝑆 ∈ TopBases ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ∀ 𝑝 ∈ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 40 | 39 | an4s | ⊢ ( ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) ∧ ( ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ∀ 𝑝 ∈ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 41 | 40 | anassrs | ⊢ ( ( ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ∀ 𝑝 ∈ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 42 | ineq12 | ⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( 𝑢 ∩ 𝑣 ) = ( ( 𝑎 × 𝑏 ) ∩ ( 𝑐 × 𝑑 ) ) ) | |
| 43 | inxp | ⊢ ( ( 𝑎 × 𝑏 ) ∩ ( 𝑐 × 𝑑 ) ) = ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) | |
| 44 | 42 43 | eqtrdi | ⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( 𝑢 ∩ 𝑣 ) = ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) |
| 45 | 44 | sseq2d | ⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ↔ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 46 | 45 | anbi2d | ⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ↔ ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 47 | 46 | rexbidv | ⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ↔ ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 48 | 1 | rexeqi | ⊢ ( ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 49 | fvex | ⊢ ( 1st ‘ 𝑧 ) ∈ V | |
| 50 | fvex | ⊢ ( 2nd ‘ 𝑧 ) ∈ V | |
| 51 | 49 50 | xpex | ⊢ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∈ V |
| 52 | 51 | rgenw | ⊢ ∀ 𝑧 ∈ ( 𝑅 × 𝑆 ) ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∈ V |
| 53 | vex | ⊢ 𝑥 ∈ V | |
| 54 | vex | ⊢ 𝑦 ∈ V | |
| 55 | 53 54 | op1std | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
| 56 | 53 54 | op2ndd | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
| 57 | 55 56 | xpeq12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) = ( 𝑥 × 𝑦 ) ) |
| 58 | 57 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑅 × 𝑆 ) ↦ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) |
| 59 | 58 | eqcomi | ⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑧 ∈ ( 𝑅 × 𝑆 ) ↦ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ) |
| 60 | eleq2 | ⊢ ( 𝑡 = ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) → ( 𝑝 ∈ 𝑡 ↔ 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ) ) | |
| 61 | sseq1 | ⊢ ( 𝑡 = ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) → ( 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ↔ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) | |
| 62 | 60 61 | anbi12d | ⊢ ( 𝑡 = ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) → ( ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 63 | 59 62 | rexrnmptw | ⊢ ( ∀ 𝑧 ∈ ( 𝑅 × 𝑆 ) ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∈ V → ( ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑧 ∈ ( 𝑅 × 𝑆 ) ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 64 | 52 63 | ax-mp | ⊢ ( ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑧 ∈ ( 𝑅 × 𝑆 ) ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 65 | 57 | eleq2d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ↔ 𝑝 ∈ ( 𝑥 × 𝑦 ) ) ) |
| 66 | 57 | sseq1d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ↔ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 67 | 65 66 | anbi12d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 68 | 67 | rexxp | ⊢ ( ∃ 𝑧 ∈ ( 𝑅 × 𝑆 ) ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 69 | 48 64 68 | 3bitri | ⊢ ( ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 70 | 47 69 | bitrdi | ⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ↔ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 71 | 44 70 | raleqbidv | ⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ↔ ∀ 𝑝 ∈ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 72 | 41 71 | syl5ibrcom | ⊢ ( ( ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
| 73 | 72 | rexlimdvva | ⊢ ( ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) → ( ∃ 𝑏 ∈ 𝑆 ∃ 𝑑 ∈ 𝑆 ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
| 74 | 17 73 | biimtrrid | ⊢ ( ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) → ( ( ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) → ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
| 75 | 74 | rexlimdvva | ⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → ( ∃ 𝑎 ∈ 𝑅 ∃ 𝑐 ∈ 𝑅 ( ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) → ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
| 76 | 16 75 | biimtrid | ⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
| 77 | 76 | ralrimivv | ⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
| 78 | 1 | txbasex | ⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → 𝐵 ∈ V ) |
| 79 | isbasis2g | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ TopBases ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) | |
| 80 | 78 79 | syl | ⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → ( 𝐵 ∈ TopBases ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
| 81 | 77 80 | mpbird | ⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → 𝐵 ∈ TopBases ) |