This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006) (Proof shortened by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltg3 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐵 ∈ dom topGen ) | |
| 2 | inex1g | ⊢ ( 𝐵 ∈ dom topGen → ( 𝐵 ∩ 𝒫 𝐴 ) ∈ V ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐵 ∩ 𝒫 𝐴 ) ∈ V ) |
| 4 | eltg4i | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐴 = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) | |
| 5 | inss1 | ⊢ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐵 | |
| 6 | sseq1 | ⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( 𝑥 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝒫 𝐴 ) ⊆ 𝐵 ) ) | |
| 7 | 5 6 | mpbiri | ⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → 𝑥 ⊆ 𝐵 ) |
| 8 | 7 | biantrurd | ⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( 𝐴 = ∪ 𝑥 ↔ ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) ) ) |
| 9 | unieq | ⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ∪ 𝑥 = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) | |
| 10 | 9 | eqeq2d | ⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( 𝐴 = ∪ 𝑥 ↔ 𝐴 = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |
| 11 | 8 10 | bitr3d | ⊢ ( 𝑥 = ( 𝐵 ∩ 𝒫 𝐴 ) → ( ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) ↔ 𝐴 = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |
| 12 | 3 4 11 | spcedv | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) ) |
| 13 | eltg3i | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵 ) → ∪ 𝑥 ∈ ( topGen ‘ 𝐵 ) ) | |
| 14 | eleq1 | ⊢ ( 𝐴 = ∪ 𝑥 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∪ 𝑥 ∈ ( topGen ‘ 𝐵 ) ) ) | |
| 15 | 13 14 | syl5ibrcom | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐴 = ∪ 𝑥 → 𝐴 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 16 | 15 | expimpd | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) → 𝐴 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 17 | 16 | exlimdv | ⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) → 𝐴 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 18 | 12 17 | impbid2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥 ) ) ) |