This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical bijection from ( RR X. RR ) to CC described in cnref1o is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if ( RR X. RR ) is metrized with the l2 norm.) (Contributed by Mario Carneiro, 25-Aug-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnrehmeo.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) | |
| cnrehmeo.2 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | ||
| cnrehmeo.3 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | cnrehmeo | ⊢ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrehmeo.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 2 | cnrehmeo.2 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 3 | cnrehmeo.3 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 4 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 5 | 2 4 | eqeltri | ⊢ 𝐽 ∈ ( TopOn ‘ ℝ ) |
| 6 | 5 | a1i | ⊢ ( ⊤ → 𝐽 ∈ ( TopOn ‘ ℝ ) ) |
| 7 | 3 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 8 | cnrest2r | ⊢ ( 𝐾 ∈ Top → ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) | |
| 9 | 7 8 | mp1i | ⊢ ( ⊤ → ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 10 | 6 6 | cnmpt1st | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 11 | 3 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( 𝐾 ↾t ℝ ) |
| 12 | 2 11 | eqtri | ⊢ 𝐽 = ( 𝐾 ↾t ℝ ) |
| 13 | 12 | oveq2i | ⊢ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) = ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) |
| 14 | 10 13 | eleqtrdi | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ) |
| 15 | 9 14 | sseldd | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 16 | 3 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 17 | 16 | a1i | ⊢ ( ⊤ → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 18 | ax-icn | ⊢ i ∈ ℂ | |
| 19 | 18 | a1i | ⊢ ( ⊤ → i ∈ ℂ ) |
| 20 | 6 6 17 19 | cnmpt2c | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ i ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 21 | 6 6 | cnmpt2nd | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 22 | 21 13 | eleqtrdi | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ) |
| 23 | 9 22 | sseldd | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 24 | 3 | mpomulcn | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 25 | 24 | a1i | ⊢ ( ⊤ → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 26 | oveq12 | ⊢ ( ( 𝑢 = i ∧ 𝑣 = 𝑦 ) → ( 𝑢 · 𝑣 ) = ( i · 𝑦 ) ) | |
| 27 | 6 6 20 23 17 17 25 26 | cnmpt22 | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( i · 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 28 | 3 | addcn | ⊢ + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 29 | 28 | a1i | ⊢ ( ⊤ → + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 30 | 6 6 15 27 29 | cnmpt22f | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 31 | 1 30 | eqeltrid | ⊢ ( ⊤ → 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 32 | 1 | cnrecnv | ⊢ ◡ 𝐹 = ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
| 33 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 34 | 33 | a1i | ⊢ ( ⊤ → ℜ : ℂ ⟶ ℝ ) |
| 35 | 34 | feqmptd | ⊢ ( ⊤ → ℜ = ( 𝑧 ∈ ℂ ↦ ( ℜ ‘ 𝑧 ) ) ) |
| 36 | recncf | ⊢ ℜ ∈ ( ℂ –cn→ ℝ ) | |
| 37 | ssid | ⊢ ℂ ⊆ ℂ | |
| 38 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 39 | 16 | toponrestid | ⊢ 𝐾 = ( 𝐾 ↾t ℂ ) |
| 40 | 3 39 12 | cncfcn | ⊢ ( ( ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( ℂ –cn→ ℝ ) = ( 𝐾 Cn 𝐽 ) ) |
| 41 | 37 38 40 | mp2an | ⊢ ( ℂ –cn→ ℝ ) = ( 𝐾 Cn 𝐽 ) |
| 42 | 36 41 | eleqtri | ⊢ ℜ ∈ ( 𝐾 Cn 𝐽 ) |
| 43 | 35 42 | eqeltrrdi | ⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ ( ℜ ‘ 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 44 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 45 | 44 | a1i | ⊢ ( ⊤ → ℑ : ℂ ⟶ ℝ ) |
| 46 | 45 | feqmptd | ⊢ ( ⊤ → ℑ = ( 𝑧 ∈ ℂ ↦ ( ℑ ‘ 𝑧 ) ) ) |
| 47 | imcncf | ⊢ ℑ ∈ ( ℂ –cn→ ℝ ) | |
| 48 | 47 41 | eleqtri | ⊢ ℑ ∈ ( 𝐾 Cn 𝐽 ) |
| 49 | 46 48 | eqeltrrdi | ⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ ( ℑ ‘ 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 50 | 17 43 49 | cnmpt1t | ⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) ∈ ( 𝐾 Cn ( 𝐽 ×t 𝐽 ) ) ) |
| 51 | 32 50 | eqeltrid | ⊢ ( ⊤ → ◡ 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ×t 𝐽 ) ) ) |
| 52 | ishmeo | ⊢ ( 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo 𝐾 ) ↔ ( 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ∧ ◡ 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ×t 𝐽 ) ) ) ) | |
| 53 | 31 51 52 | sylanbrc | ⊢ ( ⊤ → 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo 𝐾 ) ) |
| 54 | 53 | mptru | ⊢ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo 𝐾 ) |