This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngop.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| elrnmpo.1 | ⊢ 𝐶 ∈ V | ||
| Assertion | elrnmpo | ⊢ ( 𝐷 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐷 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | elrnmpo.1 | ⊢ 𝐶 ∈ V | |
| 3 | 1 | rnmpo | ⊢ ran 𝐹 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } |
| 4 | 3 | eleq2i | ⊢ ( 𝐷 ∈ ran 𝐹 ↔ 𝐷 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } ) |
| 5 | eleq1 | ⊢ ( 𝐷 = 𝐶 → ( 𝐷 ∈ V ↔ 𝐶 ∈ V ) ) | |
| 6 | 2 5 | mpbiri | ⊢ ( 𝐷 = 𝐶 → 𝐷 ∈ V ) |
| 7 | 6 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V ) |
| 8 | 7 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V ) |
| 9 | eqeq1 | ⊢ ( 𝑧 = 𝐷 → ( 𝑧 = 𝐶 ↔ 𝐷 = 𝐶 ) ) | |
| 10 | 9 | 2rexbidv | ⊢ ( 𝑧 = 𝐷 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐷 = 𝐶 ) ) |
| 11 | 8 10 | elab3 | ⊢ ( 𝐷 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐷 = 𝐶 ) |
| 12 | 4 11 | bitri | ⊢ ( 𝐷 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐷 = 𝐶 ) |