This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " F is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl . (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ismbf | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 2 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol ) ) |
| 4 | 1 3 | imbitrid | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn → 𝐴 ∈ dom vol ) ) |
| 5 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
| 6 | ioorebas | ⊢ ( -∞ (,) +∞ ) ∈ ran (,) | |
| 7 | 5 6 | eqeltrri | ⊢ ℝ ∈ ran (,) |
| 8 | imaeq2 | ⊢ ( 𝑥 = ℝ → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ℝ ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 = ℝ → ( ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) ) |
| 10 | 9 | rspcv | ⊢ ( ℝ ∈ ran (,) → ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) ) |
| 11 | 7 10 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) |
| 12 | fimacnv | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ( ◡ 𝐹 “ ℝ ) ∈ dom vol ↔ 𝐴 ∈ dom vol ) ) |
| 14 | 11 13 | imbitrid | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol → 𝐴 ∈ dom vol ) ) |
| 15 | ismbf1 | ⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) | |
| 16 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 17 | 16 | adantlr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 18 | 17 | rered | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 19 | 18 | mpteq2dva | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 | 17 | recnd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 21 | simpl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 22 | 21 | feqmptd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 23 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 24 | 23 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ℜ : ℂ ⟶ ℝ ) |
| 25 | 24 | feqmptd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ℜ = ( 𝑦 ∈ ℂ ↦ ( ℜ ‘ 𝑦 ) ) ) |
| 26 | fveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ℜ ‘ 𝑦 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 27 | 20 22 25 26 | fmptco | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ℜ ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 28 | 19 27 22 | 3eqtr4rd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐹 = ( ℜ ∘ 𝐹 ) ) |
| 29 | 28 | cnveqd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ◡ 𝐹 = ◡ ( ℜ ∘ 𝐹 ) ) |
| 30 | 29 | imaeq1d | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ) |
| 31 | 30 | eleq1d | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
| 32 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 33 | 32 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ℑ : ℂ ⟶ ℝ ) |
| 34 | 33 | feqmptd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ℑ = ( 𝑦 ∈ ℂ ↦ ( ℑ ‘ 𝑦 ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ℑ ‘ 𝑦 ) = ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 36 | 20 22 34 35 | fmptco | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ℑ ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 37 | 17 | reim0d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
| 38 | 37 | mpteq2dva | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| 39 | 36 38 | eqtrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ℑ ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| 40 | fconstmpt | ⊢ ( 𝐴 × { 0 } ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) | |
| 41 | 39 40 | eqtr4di | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ℑ ∘ 𝐹 ) = ( 𝐴 × { 0 } ) ) |
| 42 | 41 | cnveqd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ◡ ( ℑ ∘ 𝐹 ) = ◡ ( 𝐴 × { 0 } ) ) |
| 43 | 42 | imaeq1d | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) = ( ◡ ( 𝐴 × { 0 } ) “ 𝑥 ) ) |
| 44 | simpr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐴 ∈ dom vol ) | |
| 45 | 0re | ⊢ 0 ∈ ℝ | |
| 46 | mbfconstlem | ⊢ ( ( 𝐴 ∈ dom vol ∧ 0 ∈ ℝ ) → ( ◡ ( 𝐴 × { 0 } ) “ 𝑥 ) ∈ dom vol ) | |
| 47 | 44 45 46 | sylancl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ◡ ( 𝐴 × { 0 } ) “ 𝑥 ) ∈ dom vol ) |
| 48 | 43 47 | eqeltrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 49 | 48 | biantrud | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ↔ ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
| 50 | 31 49 | bitrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
| 51 | 50 | ralbidv | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
| 52 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 53 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 54 | 52 53 | mpan2 | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℂ ) |
| 55 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 56 | cnex | ⊢ ℂ ∈ V | |
| 57 | reex | ⊢ ℝ ∈ V | |
| 58 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) | |
| 59 | 56 57 58 | mpanl12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 60 | 54 55 59 | syl2an | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 61 | 60 | biantrurd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) ) |
| 62 | 51 61 | bitrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) ) |
| 63 | 15 62 | bitr4id | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 64 | 63 | ex | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐴 ∈ dom vol → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) ) |
| 65 | 4 14 64 | pm5.21ndd | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |