This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | txval.1 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) | |
| Assertion | txval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝑅 ×t 𝑆 ) = ( topGen ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txval.1 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) | |
| 2 | elex | ⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) | |
| 3 | elex | ⊢ ( 𝑆 ∈ 𝑊 → 𝑆 ∈ V ) | |
| 4 | mpoeq12 | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) ) | |
| 5 | 4 | rneqd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 6 | 5 1 | eqtr4di | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) = 𝐵 ) |
| 7 | 6 | fveq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) = ( topGen ‘ 𝐵 ) ) |
| 8 | df-tx | ⊢ ×t = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ) | |
| 9 | fvex | ⊢ ( topGen ‘ 𝐵 ) ∈ V | |
| 10 | 7 8 9 | ovmpoa | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑅 ×t 𝑆 ) = ( topGen ‘ 𝐵 ) ) |
| 11 | 2 3 10 | syl2an | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝑅 ×t 𝑆 ) = ( topGen ‘ 𝐵 ) ) |