This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector expressed as a sum belongs to the span of its components. (Contributed by NM, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsppreli.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsppreli.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lsppreli.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lsppreli.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lsppreli.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lsppreli.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsppreli.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lsppreli.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| lsppreli.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | ||
| lsppreli.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lsppreli.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lsppreli | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsppreli.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsppreli.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lsppreli.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lsppreli.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | lsppreli.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | lsppreli.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 7 | lsppreli.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 8 | lsppreli.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 9 | lsppreli.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | |
| 10 | lsppreli.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 11 | lsppreli.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 12 | 1 6 | lspsnsubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 13 | 7 10 12 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 14 | 1 6 | lspsnsubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 | 7 11 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 16 | 1 3 4 5 6 7 8 10 | ellspsni | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 17 | 1 3 4 5 6 7 9 11 | ellspsni | ⊢ ( 𝜑 → ( 𝐵 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 18 | eqid | ⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) | |
| 19 | 2 18 | lsmelvali | ⊢ ( ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝐵 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 20 | 13 15 16 17 19 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 21 | 1 6 18 7 10 11 | lsmpr | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 22 | 20 21 | eleqtrrd | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |