This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch to see if this will shorten proofs. (Contributed by NM, 20-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspexchn1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspexchn1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspexchn1.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspexchn1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspexchn1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspexchn1.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| lspexchn1.q | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 } ) ) | ||
| lspexchn1.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) | ||
| Assertion | lspexchn1 | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspexchn1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspexchn1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lspexchn1.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 4 | lspexchn1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 5 | lspexchn1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 6 | lspexchn1.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 7 | lspexchn1.q | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 } ) ) | |
| 8 | lspexchn1.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) | |
| 9 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) → 𝑊 ∈ LVec ) |
| 11 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 12 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 14 | 1 11 2 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 15 | 13 6 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 16 | 9 11 13 15 5 7 | lssneln0 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑊 ) } ) ) |
| 18 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) → 𝑋 ∈ 𝑉 ) |
| 19 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) → 𝑍 ∈ 𝑉 ) |
| 20 | 1 2 13 5 6 7 | lspsnne2 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 22 | simpr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) | |
| 23 | 1 9 2 10 17 18 19 21 22 | lspexch | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 24 | 8 23 | mtand | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |