This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch to see if this will shorten proofs. (Contributed by NM, 24-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspexchn2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspexchn2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspexchn2.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspexchn2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspexchn2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspexchn2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| lspexchn2.q | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 } ) ) | ||
| lspexchn2.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) | ||
| Assertion | lspexchn2 | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspexchn2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspexchn2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lspexchn2.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 4 | lspexchn2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 5 | lspexchn2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 6 | lspexchn2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 7 | lspexchn2.q | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 } ) ) | |
| 8 | lspexchn2.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) | |
| 9 | prcom | ⊢ { 𝑍 , 𝑌 } = { 𝑌 , 𝑍 } | |
| 10 | 9 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 , 𝑍 } ) |
| 11 | 10 | eleq2i | ⊢ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ↔ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 12 | 8 11 | sylnib | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 13 | 1 2 3 4 5 6 7 12 | lspexchn1 | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| 14 | prcom | ⊢ { 𝑋 , 𝑍 } = { 𝑍 , 𝑋 } | |
| 15 | 14 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) = ( 𝑁 ‘ { 𝑍 , 𝑋 } ) |
| 16 | 15 | eleq2i | ⊢ ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ↔ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑋 } ) ) |
| 17 | 13 16 | sylnib | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑋 } ) ) |