This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecinv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lvecinv.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lvecinv.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lvecinv.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lvecinv.o | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| lvecinv.i | ⊢ 𝐼 = ( invr ‘ 𝐹 ) | ||
| lvecinv.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lvecinv.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) | ||
| lvecinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lvecinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lvecinv | ⊢ ( 𝜑 → ( 𝑋 = ( 𝐴 · 𝑌 ) ↔ 𝑌 = ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecinv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lvecinv.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | lvecinv.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lvecinv.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lvecinv.o | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 6 | lvecinv.i | ⊢ 𝐼 = ( invr ‘ 𝐹 ) | |
| 7 | lvecinv.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 8 | lvecinv.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) | |
| 9 | lvecinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 10 | lvecinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 11 | oveq2 | ⊢ ( 𝑋 = ( 𝐴 · 𝑌 ) → ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = ( ( 𝐼 ‘ 𝐴 ) · ( 𝐴 · 𝑌 ) ) ) | |
| 12 | 3 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 13 | 7 12 | syl | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 14 | 8 | eldifad | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 15 | eldifsni | ⊢ ( 𝐴 ∈ ( 𝐾 ∖ { 0 } ) → 𝐴 ≠ 0 ) | |
| 16 | 8 15 | syl | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 17 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 18 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 19 | 4 5 17 18 6 | drnginvrl | ⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ( ( 𝐼 ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
| 20 | 13 14 16 19 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
| 21 | 20 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐼 ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 1r ‘ 𝐹 ) · 𝑌 ) ) |
| 22 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 23 | 7 22 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 24 | 4 5 6 | drnginvrcl | ⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ( 𝐼 ‘ 𝐴 ) ∈ 𝐾 ) |
| 25 | 13 14 16 24 | syl3anc | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝐴 ) ∈ 𝐾 ) |
| 26 | 1 3 2 4 17 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝐼 ‘ 𝐴 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 𝐼 ‘ 𝐴 ) · ( 𝐴 · 𝑌 ) ) ) |
| 27 | 23 25 14 10 26 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝐼 ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 𝐼 ‘ 𝐴 ) · ( 𝐴 · 𝑌 ) ) ) |
| 28 | 1 3 2 18 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑌 ) = 𝑌 ) |
| 29 | 23 10 28 | syl2anc | ⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) · 𝑌 ) = 𝑌 ) |
| 30 | 21 27 29 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝐴 ) · ( 𝐴 · 𝑌 ) ) = 𝑌 ) |
| 31 | 11 30 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑋 = ( 𝐴 · 𝑌 ) ) → ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = 𝑌 ) |
| 32 | 4 5 17 18 6 | drnginvrr | ⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐼 ‘ 𝐴 ) ) = ( 1r ‘ 𝐹 ) ) |
| 33 | 13 14 16 32 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐼 ‘ 𝐴 ) ) = ( 1r ‘ 𝐹 ) ) |
| 34 | 33 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐼 ‘ 𝐴 ) ) · 𝑋 ) = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) |
| 35 | 1 3 2 4 17 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ ( 𝐼 ‘ 𝐴 ) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐼 ‘ 𝐴 ) ) · 𝑋 ) = ( 𝐴 · ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) ) |
| 36 | 23 14 25 9 35 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐼 ‘ 𝐴 ) ) · 𝑋 ) = ( 𝐴 · ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) ) |
| 37 | 1 3 2 18 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 38 | 23 9 37 | syl2anc | ⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 39 | 34 36 38 | 3eqtr3rd | ⊢ ( 𝜑 → 𝑋 = ( 𝐴 · ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) ) |
| 40 | oveq2 | ⊢ ( ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = 𝑌 → ( 𝐴 · ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) = ( 𝐴 · 𝑌 ) ) | |
| 41 | 39 40 | sylan9eq | ⊢ ( ( 𝜑 ∧ ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = 𝑌 ) → 𝑋 = ( 𝐴 · 𝑌 ) ) |
| 42 | 31 41 | impbida | ⊢ ( 𝜑 → ( 𝑋 = ( 𝐴 · 𝑌 ) ↔ ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = 𝑌 ) ) |
| 43 | eqcom | ⊢ ( ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = 𝑌 ↔ 𝑌 = ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) | |
| 44 | 42 43 | bitrdi | ⊢ ( 𝜑 → ( 𝑋 = ( 𝐴 · 𝑌 ) ↔ 𝑌 = ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) ) |