This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodsubvs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodsubvs.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lmodsubvs.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| lmodsubvs.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodsubvs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodsubvs.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lmodsubvs.n | ⊢ 𝑁 = ( invg ‘ 𝐹 ) | ||
| lmodsubvs.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lmodsubvs.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| lmodsubvs.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lmodsubvs.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lmodsubvs | ⊢ ( 𝜑 → ( 𝑋 − ( 𝐴 · 𝑌 ) ) = ( 𝑋 + ( ( 𝑁 ‘ 𝐴 ) · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubvs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodsubvs.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lmodsubvs.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | lmodsubvs.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | lmodsubvs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 6 | lmodsubvs.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 7 | lmodsubvs.n | ⊢ 𝑁 = ( invg ‘ 𝐹 ) | |
| 8 | lmodsubvs.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 9 | lmodsubvs.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 10 | lmodsubvs.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 11 | lmodsubvs.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 12 | 1 5 4 6 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
| 13 | 8 9 11 12 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
| 14 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 15 | 1 2 3 5 4 7 14 | lmodvsubval2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ( 𝐴 · 𝑌 ) ∈ 𝑉 ) → ( 𝑋 − ( 𝐴 · 𝑌 ) ) = ( 𝑋 + ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) ) |
| 16 | 8 10 13 15 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 − ( 𝐴 · 𝑌 ) ) = ( 𝑋 + ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) ) |
| 17 | 5 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 18 | 8 17 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 19 | ringgrp | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 21 | 6 14 | ringidcl | ⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 22 | 18 21 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 23 | 6 7 | grpinvcl | ⊢ ( ( 𝐹 ∈ Grp ∧ ( 1r ‘ 𝐹 ) ∈ 𝐾 ) → ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 24 | 20 22 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 25 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 26 | 1 5 4 6 25 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) |
| 27 | 8 24 9 11 26 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) |
| 28 | 6 25 14 7 18 9 | ringnegl | ⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 𝑁 ‘ 𝐴 ) ) |
| 29 | 28 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 𝑁 ‘ 𝐴 ) · 𝑌 ) ) |
| 30 | 27 29 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) = ( ( 𝑁 ‘ 𝐴 ) · 𝑌 ) ) |
| 31 | 30 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 + ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) = ( 𝑋 + ( ( 𝑁 ‘ 𝐴 ) · 𝑌 ) ) ) |
| 32 | 16 31 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 − ( 𝐴 · 𝑌 ) ) = ( 𝑋 + ( ( 𝑁 ‘ 𝐴 ) · 𝑌 ) ) ) |