This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | grpsubadd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) = 𝑍 ↔ ( 𝑍 + 𝑌 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 5 | 1 2 4 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 8 | 7 | eqeq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) = 𝑍 ↔ ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑍 ) ) |
| 9 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) | |
| 10 | simpr1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 11 | 1 4 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 12 | 11 | 3ad2antr2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 13 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 14 | 9 10 12 13 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 15 | simpr3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 16 | simpr2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 17 | 1 2 | grprcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = ( 𝑍 + 𝑌 ) ↔ ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑍 ) ) |
| 18 | 9 14 15 16 17 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = ( 𝑍 + 𝑌 ) ↔ ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑍 ) ) |
| 19 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) + 𝑌 ) ) ) |
| 20 | 9 10 12 16 19 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) + 𝑌 ) ) ) |
| 21 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 22 | 1 2 21 4 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) + 𝑌 ) = ( 0g ‘ 𝐺 ) ) |
| 23 | 22 | 3ad2antr2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) + 𝑌 ) = ( 0g ‘ 𝐺 ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) + 𝑌 ) ) = ( 𝑋 + ( 0g ‘ 𝐺 ) ) ) |
| 25 | 1 2 21 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
| 26 | 25 | 3ad2antr1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
| 27 | 20 24 26 | 3eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = 𝑋 ) |
| 28 | 27 | eqeq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = ( 𝑍 + 𝑌 ) ) ) |
| 29 | 8 18 28 | 3bitr2d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) = 𝑍 ↔ 𝑋 = ( 𝑍 + 𝑌 ) ) ) |
| 30 | eqcom | ⊢ ( 𝑋 = ( 𝑍 + 𝑌 ) ↔ ( 𝑍 + 𝑌 ) = 𝑋 ) | |
| 31 | 29 30 | bitrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) = 𝑍 ↔ ( 𝑍 + 𝑌 ) = 𝑋 ) ) |