This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership relation that implies equality of spans. ( spansneleq analog.) (Contributed by NM, 4-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsneleq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsneleq.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspsneleq.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsneleq.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspsneleq.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspsneleq.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) | ||
| lspsneleq.z | ⊢ ( 𝜑 → 𝑌 ≠ 0 ) | ||
| Assertion | lspsneleq | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsneleq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsneleq.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspsneleq.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspsneleq.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspsneleq.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspsneleq.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) | |
| 7 | lspsneleq.z | ⊢ ( 𝜑 → 𝑌 ≠ 0 ) | |
| 8 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 10 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 12 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 13 | 10 11 1 12 3 | ellspsn | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
| 14 | 9 5 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
| 15 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) | |
| 16 | 15 | sneqd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → { 𝑌 } = { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) |
| 17 | 16 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) ) |
| 18 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑊 ∈ LVec ) |
| 19 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 20 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑌 ≠ 0 ) |
| 21 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) | |
| 22 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 23 | 22 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
| 24 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 25 | 1 10 12 24 2 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
| 26 | 9 5 25 | syl2anc | ⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
| 27 | 26 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
| 28 | 21 23 27 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑌 = 0 ) |
| 29 | 28 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑌 = 0 ) ) |
| 30 | 29 | necon3d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑌 ≠ 0 → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 31 | 20 30 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 32 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑋 ∈ 𝑉 ) |
| 33 | 1 10 12 11 24 3 | lspsnvs | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 34 | 18 19 31 32 33 | syl121anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 35 | 17 34 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 36 | 35 | rexlimdva2 | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 37 | 14 36 | sylbid | ⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 38 | 6 37 | mpd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |