This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exchange property for span of a pair. TODO: see if a version with Y,Z and X,Z reversed will shorten proofs (analogous to lspexchn1 versus lspexchn2 ); look for lspexch and prcom in same proof. TODO: would a hypothesis of -. X e. ( N{ Z } ) instead of ( N{ X } ) =/= ( N{ Z } ) be better overall? This would be shorter and also satisfy the X =/= .0. condition. Here and also lspindp* and all proofs affected by them (all in NM's mathbox); there are 58 hypotheses with the =/= pattern as of 24-May-2015. (Contributed by NM, 11-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspexch.v | |- V = ( Base ` W ) |
|
| lspexch.o | |- .0. = ( 0g ` W ) |
||
| lspexch.n | |- N = ( LSpan ` W ) |
||
| lspexch.w | |- ( ph -> W e. LVec ) |
||
| lspexch.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
| lspexch.y | |- ( ph -> Y e. V ) |
||
| lspexch.z | |- ( ph -> Z e. V ) |
||
| lspexch.q | |- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
||
| lspexch.e | |- ( ph -> X e. ( N ` { Y , Z } ) ) |
||
| Assertion | lspexch | |- ( ph -> Y e. ( N ` { X , Z } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspexch.v | |- V = ( Base ` W ) |
|
| 2 | lspexch.o | |- .0. = ( 0g ` W ) |
|
| 3 | lspexch.n | |- N = ( LSpan ` W ) |
|
| 4 | lspexch.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspexch.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
| 6 | lspexch.y | |- ( ph -> Y e. V ) |
|
| 7 | lspexch.z | |- ( ph -> Z e. V ) |
|
| 8 | lspexch.q | |- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
|
| 9 | lspexch.e | |- ( ph -> X e. ( N ` { Y , Z } ) ) |
|
| 10 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 11 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 12 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 13 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 14 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 15 | 4 14 | syl | |- ( ph -> W e. LMod ) |
| 16 | 1 10 11 12 13 3 15 6 7 | lspprel | |- ( ph -> ( X e. ( N ` { Y , Z } ) <-> E. j e. ( Base ` ( Scalar ` W ) ) E. k e. ( Base ` ( Scalar ` W ) ) X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) ) |
| 17 | 9 16 | mpbid | |- ( ph -> E. j e. ( Base ` ( Scalar ` W ) ) E. k e. ( Base ` ( Scalar ` W ) ) X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) |
| 18 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 19 | eqid | |- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
|
| 20 | 4 | 3ad2ant1 | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> W e. LVec ) |
| 21 | 20 14 | syl | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> W e. LMod ) |
| 22 | simp2r | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> k e. ( Base ` ( Scalar ` W ) ) ) |
|
| 23 | 5 | 3ad2ant1 | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> X e. ( V \ { .0. } ) ) |
| 24 | 23 | eldifad | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> X e. V ) |
| 25 | 7 | 3ad2ant1 | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> Z e. V ) |
| 26 | 1 10 18 13 11 12 19 21 22 24 25 | lmodsubvs | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( X ( -g ` W ) ( k ( .s ` W ) Z ) ) = ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) |
| 27 | simp3 | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) |
|
| 28 | 27 | eqcomd | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = X ) |
| 29 | 15 | 3ad2ant1 | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> W e. LMod ) |
| 30 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 31 | 29 30 | syl | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> W e. Grp ) |
| 32 | 1 11 13 12 | lmodvscl | |- ( ( W e. LMod /\ k e. ( Base ` ( Scalar ` W ) ) /\ Z e. V ) -> ( k ( .s ` W ) Z ) e. V ) |
| 33 | 21 22 25 32 | syl3anc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( k ( .s ` W ) Z ) e. V ) |
| 34 | simp2l | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> j e. ( Base ` ( Scalar ` W ) ) ) |
|
| 35 | 6 | 3ad2ant1 | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> Y e. V ) |
| 36 | 1 11 13 12 | lmodvscl | |- ( ( W e. LMod /\ j e. ( Base ` ( Scalar ` W ) ) /\ Y e. V ) -> ( j ( .s ` W ) Y ) e. V ) |
| 37 | 21 34 35 36 | syl3anc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( j ( .s ` W ) Y ) e. V ) |
| 38 | 1 10 18 | grpsubadd | |- ( ( W e. Grp /\ ( X e. V /\ ( k ( .s ` W ) Z ) e. V /\ ( j ( .s ` W ) Y ) e. V ) ) -> ( ( X ( -g ` W ) ( k ( .s ` W ) Z ) ) = ( j ( .s ` W ) Y ) <-> ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = X ) ) |
| 39 | 31 24 33 37 38 | syl13anc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( X ( -g ` W ) ( k ( .s ` W ) Z ) ) = ( j ( .s ` W ) Y ) <-> ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = X ) ) |
| 40 | 28 39 | mpbird | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( X ( -g ` W ) ( k ( .s ` W ) Z ) ) = ( j ( .s ` W ) Y ) ) |
| 41 | 26 40 | eqtr3d | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) = ( j ( .s ` W ) Y ) ) |
| 42 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 43 | eqid | |- ( invr ` ( Scalar ` W ) ) = ( invr ` ( Scalar ` W ) ) |
|
| 44 | 8 | 3ad2ant1 | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
| 45 | 20 | adantr | |- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> W e. LVec ) |
| 46 | 25 | adantr | |- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> Z e. V ) |
| 47 | 27 | adantr | |- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) |
| 48 | oveq1 | |- ( j = ( 0g ` ( Scalar ` W ) ) -> ( j ( .s ` W ) Y ) = ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) ) |
|
| 49 | 48 | oveq1d | |- ( j = ( 0g ` ( Scalar ` W ) ) -> ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) |
| 50 | 1 11 13 42 2 | lmod0vs | |- ( ( W e. LMod /\ Y e. V ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) = .0. ) |
| 51 | 21 35 50 | syl2anc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) = .0. ) |
| 52 | 51 | oveq1d | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( .0. ( +g ` W ) ( k ( .s ` W ) Z ) ) ) |
| 53 | 1 10 2 | lmod0vlid | |- ( ( W e. LMod /\ ( k ( .s ` W ) Z ) e. V ) -> ( .0. ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( k ( .s ` W ) Z ) ) |
| 54 | 21 33 53 | syl2anc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( .0. ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( k ( .s ` W ) Z ) ) |
| 55 | 52 54 | eqtrd | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( k ( .s ` W ) Z ) ) |
| 56 | 49 55 | sylan9eqr | |- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) = ( k ( .s ` W ) Z ) ) |
| 57 | 47 56 | eqtrd | |- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> X = ( k ( .s ` W ) Z ) ) |
| 58 | 1 13 11 12 3 21 22 25 | ellspsni | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( k ( .s ` W ) Z ) e. ( N ` { Z } ) ) |
| 59 | 58 | adantr | |- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> ( k ( .s ` W ) Z ) e. ( N ` { Z } ) ) |
| 60 | 57 59 | eqeltrd | |- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> X e. ( N ` { Z } ) ) |
| 61 | eldifsni | |- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
|
| 62 | 23 61 | syl | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> X =/= .0. ) |
| 63 | 62 | adantr | |- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> X =/= .0. ) |
| 64 | 1 2 3 45 46 60 63 | lspsneleq | |- ( ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) /\ j = ( 0g ` ( Scalar ` W ) ) ) -> ( N ` { X } ) = ( N ` { Z } ) ) |
| 65 | 64 | ex | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( j = ( 0g ` ( Scalar ` W ) ) -> ( N ` { X } ) = ( N ` { Z } ) ) ) |
| 66 | 65 | necon3d | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( N ` { X } ) =/= ( N ` { Z } ) -> j =/= ( 0g ` ( Scalar ` W ) ) ) ) |
| 67 | 44 66 | mpd | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> j =/= ( 0g ` ( Scalar ` W ) ) ) |
| 68 | eldifsn | |- ( j e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) <-> ( j e. ( Base ` ( Scalar ` W ) ) /\ j =/= ( 0g ` ( Scalar ` W ) ) ) ) |
|
| 69 | 34 67 68 | sylanbrc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> j e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) |
| 70 | 11 | lmodfgrp | |- ( W e. LMod -> ( Scalar ` W ) e. Grp ) |
| 71 | 29 70 | syl | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( Scalar ` W ) e. Grp ) |
| 72 | 12 19 | grpinvcl | |- ( ( ( Scalar ` W ) e. Grp /\ k e. ( Base ` ( Scalar ` W ) ) ) -> ( ( invg ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) ) |
| 73 | 71 22 72 | syl2anc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( invg ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) ) |
| 74 | 1 11 13 12 | lmodvscl | |- ( ( W e. LMod /\ ( ( invg ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) /\ Z e. V ) -> ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) e. V ) |
| 75 | 21 73 25 74 | syl3anc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) e. V ) |
| 76 | 1 10 | lmodvacl | |- ( ( W e. LMod /\ X e. V /\ ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) e. V ) -> ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) e. V ) |
| 77 | 21 24 75 76 | syl3anc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) e. V ) |
| 78 | 1 13 11 12 42 43 20 69 77 35 | lvecinv | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) = ( j ( .s ` W ) Y ) <-> Y = ( ( ( invr ` ( Scalar ` W ) ) ` j ) ( .s ` W ) ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) ) ) |
| 79 | 41 78 | mpbid | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> Y = ( ( ( invr ` ( Scalar ` W ) ) ` j ) ( .s ` W ) ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) ) |
| 80 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 81 | 1 80 3 21 24 25 | lspprcl | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( N ` { X , Z } ) e. ( LSubSp ` W ) ) |
| 82 | 11 | lvecdrng | |- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
| 83 | 20 82 | syl | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( Scalar ` W ) e. DivRing ) |
| 84 | 12 42 43 | drnginvrcl | |- ( ( ( Scalar ` W ) e. DivRing /\ j e. ( Base ` ( Scalar ` W ) ) /\ j =/= ( 0g ` ( Scalar ` W ) ) ) -> ( ( invr ` ( Scalar ` W ) ) ` j ) e. ( Base ` ( Scalar ` W ) ) ) |
| 85 | 83 34 67 84 | syl3anc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( invr ` ( Scalar ` W ) ) ` j ) e. ( Base ` ( Scalar ` W ) ) ) |
| 86 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 87 | 1 11 13 86 | lmodvs1 | |- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) = X ) |
| 88 | 21 24 87 | syl2anc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) = X ) |
| 89 | 88 | oveq1d | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) = ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) |
| 90 | 11 | lmodring | |- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
| 91 | 12 86 | ringidcl | |- ( ( Scalar ` W ) e. Ring -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 92 | 21 90 91 | 3syl | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 93 | 1 10 13 11 12 3 21 92 73 24 25 | lsppreli | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) e. ( N ` { X , Z } ) ) |
| 94 | 89 93 | eqeltrrd | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) e. ( N ` { X , Z } ) ) |
| 95 | 11 13 12 80 | lssvscl | |- ( ( ( W e. LMod /\ ( N ` { X , Z } ) e. ( LSubSp ` W ) ) /\ ( ( ( invr ` ( Scalar ` W ) ) ` j ) e. ( Base ` ( Scalar ` W ) ) /\ ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) e. ( N ` { X , Z } ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` j ) ( .s ` W ) ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) e. ( N ` { X , Z } ) ) |
| 96 | 21 81 85 94 95 | syl22anc | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` j ) ( .s ` W ) ( X ( +g ` W ) ( ( ( invg ` ( Scalar ` W ) ) ` k ) ( .s ` W ) Z ) ) ) e. ( N ` { X , Z } ) ) |
| 97 | 79 96 | eqeltrd | |- ( ( ph /\ ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) ) -> Y e. ( N ` { X , Z } ) ) |
| 98 | 97 | 3exp | |- ( ph -> ( ( j e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) ) -> ( X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) -> Y e. ( N ` { X , Z } ) ) ) ) |
| 99 | 98 | rexlimdvv | |- ( ph -> ( E. j e. ( Base ` ( Scalar ` W ) ) E. k e. ( Base ` ( Scalar ` W ) ) X = ( ( j ( .s ` W ) Y ) ( +g ` W ) ( k ( .s ` W ) Z ) ) -> Y e. ( N ` { X , Z } ) ) ) |
| 100 | 17 99 | mpd | |- ( ph -> Y e. ( N ` { X , Z } ) ) |