This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A scalar product with a vector belongs to the span of its singleton. ( spansnmul analog.) (Contributed by NM, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnvsel.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsnvsel.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lspsnvsel.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lspsnvsel.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lspsnvsel.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsnvsel.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspsnvsel.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| lspsnvsel.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | ellspsni | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnvsel.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsnvsel.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | lspsnvsel.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lspsnvsel.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lspsnvsel.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 6 | lspsnvsel.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 7 | lspsnvsel.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 8 | lspsnvsel.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 9 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 10 | 1 9 5 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 | 6 8 10 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 | 1 5 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 13 | 6 8 12 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 14 | 3 2 4 9 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 15 | 6 11 7 13 14 | syl22anc | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |