This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The logarithm maps its continuous domain bijectively onto the set of numbers with imaginary part -upi < Im ( z ) < pi . The negative reals are mapped to the numbers with imaginary part equal to _pi . (Contributed by Mario Carneiro, 2-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| Assertion | logf1o2 | ⊢ ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( ◡ ℑ “ ( - π (,) π ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | logf1o | ⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log | |
| 3 | f1of1 | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) –1-1→ ran log ) | |
| 4 | 2 3 | ax-mp | ⊢ log : ( ℂ ∖ { 0 } ) –1-1→ ran log |
| 5 | 1 | logdmss | ⊢ 𝐷 ⊆ ( ℂ ∖ { 0 } ) |
| 6 | f1ores | ⊢ ( ( log : ( ℂ ∖ { 0 } ) –1-1→ ran log ∧ 𝐷 ⊆ ( ℂ ∖ { 0 } ) ) → ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) |
| 8 | f1ofun | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → Fun log ) | |
| 9 | 2 8 | ax-mp | ⊢ Fun log |
| 10 | f1of | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) | |
| 11 | 2 10 | ax-mp | ⊢ log : ( ℂ ∖ { 0 } ) ⟶ ran log |
| 12 | 11 | fdmi | ⊢ dom log = ( ℂ ∖ { 0 } ) |
| 13 | 5 12 | sseqtrri | ⊢ 𝐷 ⊆ dom log |
| 14 | funimass4 | ⊢ ( ( Fun log ∧ 𝐷 ⊆ dom log ) → ( ( log “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ∀ 𝑥 ∈ 𝐷 ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ) ) | |
| 15 | 9 13 14 | mp2an | ⊢ ( ( log “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ∀ 𝑥 ∈ 𝐷 ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ) |
| 16 | 1 | ellogdm | ⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) ) |
| 17 | 16 | simplbi | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
| 18 | 1 | logdmn0 | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ≠ 0 ) |
| 19 | 17 18 | logcld | ⊢ ( 𝑥 ∈ 𝐷 → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 20 | 19 | imcld | ⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 21 | 17 18 | logimcld | ⊢ ( 𝑥 ∈ 𝐷 → ( - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) ≤ π ) ) |
| 22 | 21 | simpld | ⊢ ( 𝑥 ∈ 𝐷 → - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ) |
| 23 | pire | ⊢ π ∈ ℝ | |
| 24 | 23 | a1i | ⊢ ( 𝑥 ∈ 𝐷 → π ∈ ℝ ) |
| 25 | 21 | simprd | ⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ≤ π ) |
| 26 | 1 | logdmnrp | ⊢ ( 𝑥 ∈ 𝐷 → ¬ - 𝑥 ∈ ℝ+ ) |
| 27 | lognegb | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( - 𝑥 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝑥 ) ) = π ) ) | |
| 28 | 17 18 27 | syl2anc | ⊢ ( 𝑥 ∈ 𝐷 → ( - 𝑥 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝑥 ) ) = π ) ) |
| 29 | 28 | necon3bbid | ⊢ ( 𝑥 ∈ 𝐷 → ( ¬ - 𝑥 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝑥 ) ) ≠ π ) ) |
| 30 | 26 29 | mpbid | ⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ≠ π ) |
| 31 | 30 | necomd | ⊢ ( 𝑥 ∈ 𝐷 → π ≠ ( ℑ ‘ ( log ‘ 𝑥 ) ) ) |
| 32 | 20 24 25 31 | leneltd | ⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) < π ) |
| 33 | 23 | renegcli | ⊢ - π ∈ ℝ |
| 34 | 33 | rexri | ⊢ - π ∈ ℝ* |
| 35 | 23 | rexri | ⊢ π ∈ ℝ* |
| 36 | elioo2 | ⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ↔ ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) < π ) ) ) | |
| 37 | 34 35 36 | mp2an | ⊢ ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ↔ ( ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝑥 ) ) ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) < π ) ) |
| 38 | 20 22 32 37 | syl3anbrc | ⊢ ( 𝑥 ∈ 𝐷 → ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ) |
| 39 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 40 | ffn | ⊢ ( ℑ : ℂ ⟶ ℝ → ℑ Fn ℂ ) | |
| 41 | elpreima | ⊢ ( ℑ Fn ℂ → ( ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( ( log ‘ 𝑥 ) ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ) ) ) | |
| 42 | 39 40 41 | mp2b | ⊢ ( ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( ( log ‘ 𝑥 ) ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝑥 ) ) ∈ ( - π (,) π ) ) ) |
| 43 | 19 38 42 | sylanbrc | ⊢ ( 𝑥 ∈ 𝐷 → ( log ‘ 𝑥 ) ∈ ( ◡ ℑ “ ( - π (,) π ) ) ) |
| 44 | 15 43 | mprgbir | ⊢ ( log “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,) π ) ) |
| 45 | elpreima | ⊢ ( ℑ Fn ℂ → ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ) ) | |
| 46 | 39 40 45 | mp2b | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ) |
| 47 | simpl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → 𝑥 ∈ ℂ ) | |
| 48 | eliooord | ⊢ ( ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) → ( - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) < π ) ) | |
| 49 | 48 | adantl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) < π ) ) |
| 50 | 49 | simpld | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → - π < ( ℑ ‘ 𝑥 ) ) |
| 51 | 49 | simprd | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( ℑ ‘ 𝑥 ) < π ) |
| 52 | imcl | ⊢ ( 𝑥 ∈ ℂ → ( ℑ ‘ 𝑥 ) ∈ ℝ ) | |
| 53 | 52 | adantr | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
| 54 | ltle | ⊢ ( ( ( ℑ ‘ 𝑥 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) < π → ( ℑ ‘ 𝑥 ) ≤ π ) ) | |
| 55 | 53 23 54 | sylancl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( ( ℑ ‘ 𝑥 ) < π → ( ℑ ‘ 𝑥 ) ≤ π ) ) |
| 56 | 51 55 | mpd | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( ℑ ‘ 𝑥 ) ≤ π ) |
| 57 | ellogrn | ⊢ ( 𝑥 ∈ ran log ↔ ( 𝑥 ∈ ℂ ∧ - π < ( ℑ ‘ 𝑥 ) ∧ ( ℑ ‘ 𝑥 ) ≤ π ) ) | |
| 58 | 47 50 56 57 | syl3anbrc | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → 𝑥 ∈ ran log ) |
| 59 | logef | ⊢ ( 𝑥 ∈ ran log → ( log ‘ ( exp ‘ 𝑥 ) ) = 𝑥 ) | |
| 60 | 58 59 | syl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( log ‘ ( exp ‘ 𝑥 ) ) = 𝑥 ) |
| 61 | efcl | ⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ℂ ) | |
| 62 | 61 | adantr | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( exp ‘ 𝑥 ) ∈ ℂ ) |
| 63 | 53 | adantr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
| 64 | 63 | recnd | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ 𝑥 ) ∈ ℂ ) |
| 65 | picn | ⊢ π ∈ ℂ | |
| 66 | 65 | a1i | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → π ∈ ℂ ) |
| 67 | pipos | ⊢ 0 < π | |
| 68 | 23 67 | gt0ne0ii | ⊢ π ≠ 0 |
| 69 | 68 | a1i | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → π ≠ 0 ) |
| 70 | 51 | adantr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ 𝑥 ) < π ) |
| 71 | 65 | mulridi | ⊢ ( π · 1 ) = π |
| 72 | 70 71 | breqtrrdi | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ 𝑥 ) < ( π · 1 ) ) |
| 73 | 1re | ⊢ 1 ∈ ℝ | |
| 74 | 73 | a1i | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → 1 ∈ ℝ ) |
| 75 | 23 | a1i | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → π ∈ ℝ ) |
| 76 | 67 | a1i | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → 0 < π ) |
| 77 | ltdivmul | ⊢ ( ( ( ℑ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( π ∈ ℝ ∧ 0 < π ) ) → ( ( ( ℑ ‘ 𝑥 ) / π ) < 1 ↔ ( ℑ ‘ 𝑥 ) < ( π · 1 ) ) ) | |
| 78 | 63 74 75 76 77 | syl112anc | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ( ℑ ‘ 𝑥 ) / π ) < 1 ↔ ( ℑ ‘ 𝑥 ) < ( π · 1 ) ) ) |
| 79 | 72 78 | mpbird | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) < 1 ) |
| 80 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 81 | 79 80 | breqtrdi | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) < ( 0 + 1 ) ) |
| 82 | 63 | recoscld | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( cos ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ ) |
| 83 | 63 | resincld | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( sin ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℝ ) |
| 84 | 82 83 | crimd | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) = ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) |
| 85 | efeul | ⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) = ( ( exp ‘ ( ℜ ‘ 𝑥 ) ) · ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) ) | |
| 86 | 85 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ 𝑥 ) = ( ( exp ‘ ( ℜ ‘ 𝑥 ) ) · ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) ) |
| 87 | 86 | oveq1d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( exp ‘ 𝑥 ) / ( exp ‘ ( ℜ ‘ 𝑥 ) ) ) = ( ( ( exp ‘ ( ℜ ‘ 𝑥 ) ) · ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) / ( exp ‘ ( ℜ ‘ 𝑥 ) ) ) ) |
| 88 | 82 | recnd | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( cos ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) |
| 89 | ax-icn | ⊢ i ∈ ℂ | |
| 90 | 83 | recnd | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( sin ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) |
| 91 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) → ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ∈ ℂ ) | |
| 92 | 89 90 91 | sylancr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 93 | 88 92 | addcld | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 94 | recl | ⊢ ( 𝑥 ∈ ℂ → ( ℜ ‘ 𝑥 ) ∈ ℝ ) | |
| 95 | 94 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℜ ‘ 𝑥 ) ∈ ℝ ) |
| 96 | 95 | recnd | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℜ ‘ 𝑥 ) ∈ ℂ ) |
| 97 | efcl | ⊢ ( ( ℜ ‘ 𝑥 ) ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝑥 ) ) ∈ ℂ ) | |
| 98 | 96 97 | syl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ ( ℜ ‘ 𝑥 ) ) ∈ ℂ ) |
| 99 | efne0 | ⊢ ( ( ℜ ‘ 𝑥 ) ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝑥 ) ) ≠ 0 ) | |
| 100 | 96 99 | syl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ ( ℜ ‘ 𝑥 ) ) ≠ 0 ) |
| 101 | 93 98 100 | divcan3d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ( exp ‘ ( ℜ ‘ 𝑥 ) ) · ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) / ( exp ‘ ( ℜ ‘ 𝑥 ) ) ) = ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) |
| 102 | 87 101 | eqtrd | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( exp ‘ 𝑥 ) / ( exp ‘ ( ℜ ‘ 𝑥 ) ) ) = ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) |
| 103 | simpr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ 𝑥 ) ∈ ℝ ) | |
| 104 | 95 | reefcld | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ ( ℜ ‘ 𝑥 ) ) ∈ ℝ ) |
| 105 | 103 104 100 | redivcld | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( exp ‘ 𝑥 ) / ( exp ‘ ( ℜ ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 106 | 102 105 | eqeltrrd | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 107 | 106 | reim0d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ ( ( cos ‘ ( ℑ ‘ 𝑥 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) = 0 ) |
| 108 | 84 107 | eqtr3d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( sin ‘ ( ℑ ‘ 𝑥 ) ) = 0 ) |
| 109 | sineq0 | ⊢ ( ( ℑ ‘ 𝑥 ) ∈ ℂ → ( ( sin ‘ ( ℑ ‘ 𝑥 ) ) = 0 ↔ ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℤ ) ) | |
| 110 | 64 109 | syl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( sin ‘ ( ℑ ‘ 𝑥 ) ) = 0 ↔ ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℤ ) ) |
| 111 | 108 110 | mpbid | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℤ ) |
| 112 | 0z | ⊢ 0 ∈ ℤ | |
| 113 | zleltp1 | ⊢ ( ( ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( ( ℑ ‘ 𝑥 ) / π ) ≤ 0 ↔ ( ( ℑ ‘ 𝑥 ) / π ) < ( 0 + 1 ) ) ) | |
| 114 | 111 112 113 | sylancl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ( ℑ ‘ 𝑥 ) / π ) ≤ 0 ↔ ( ( ℑ ‘ 𝑥 ) / π ) < ( 0 + 1 ) ) ) |
| 115 | 81 114 | mpbird | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) ≤ 0 ) |
| 116 | df-neg | ⊢ - 1 = ( 0 − 1 ) | |
| 117 | 65 | mulm1i | ⊢ ( - 1 · π ) = - π |
| 118 | 50 | adantr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → - π < ( ℑ ‘ 𝑥 ) ) |
| 119 | 117 118 | eqbrtrid | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( - 1 · π ) < ( ℑ ‘ 𝑥 ) ) |
| 120 | 73 | renegcli | ⊢ - 1 ∈ ℝ |
| 121 | 120 | a1i | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → - 1 ∈ ℝ ) |
| 122 | ltmuldiv | ⊢ ( ( - 1 ∈ ℝ ∧ ( ℑ ‘ 𝑥 ) ∈ ℝ ∧ ( π ∈ ℝ ∧ 0 < π ) ) → ( ( - 1 · π ) < ( ℑ ‘ 𝑥 ) ↔ - 1 < ( ( ℑ ‘ 𝑥 ) / π ) ) ) | |
| 123 | 121 63 75 76 122 | syl112anc | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( - 1 · π ) < ( ℑ ‘ 𝑥 ) ↔ - 1 < ( ( ℑ ‘ 𝑥 ) / π ) ) ) |
| 124 | 119 123 | mpbid | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → - 1 < ( ( ℑ ‘ 𝑥 ) / π ) ) |
| 125 | 116 124 | eqbrtrrid | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( 0 − 1 ) < ( ( ℑ ‘ 𝑥 ) / π ) ) |
| 126 | zlem1lt | ⊢ ( ( 0 ∈ ℤ ∧ ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℤ ) → ( 0 ≤ ( ( ℑ ‘ 𝑥 ) / π ) ↔ ( 0 − 1 ) < ( ( ℑ ‘ 𝑥 ) / π ) ) ) | |
| 127 | 112 111 126 | sylancr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( 0 ≤ ( ( ℑ ‘ 𝑥 ) / π ) ↔ ( 0 − 1 ) < ( ( ℑ ‘ 𝑥 ) / π ) ) ) |
| 128 | 125 127 | mpbird | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → 0 ≤ ( ( ℑ ‘ 𝑥 ) / π ) ) |
| 129 | 63 75 69 | redivcld | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℝ ) |
| 130 | 0re | ⊢ 0 ∈ ℝ | |
| 131 | letri3 | ⊢ ( ( ( ( ℑ ‘ 𝑥 ) / π ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( ℑ ‘ 𝑥 ) / π ) = 0 ↔ ( ( ( ℑ ‘ 𝑥 ) / π ) ≤ 0 ∧ 0 ≤ ( ( ℑ ‘ 𝑥 ) / π ) ) ) ) | |
| 132 | 129 130 131 | sylancl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ( ℑ ‘ 𝑥 ) / π ) = 0 ↔ ( ( ( ℑ ‘ 𝑥 ) / π ) ≤ 0 ∧ 0 ≤ ( ( ℑ ‘ 𝑥 ) / π ) ) ) ) |
| 133 | 115 128 132 | mpbir2and | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ( ℑ ‘ 𝑥 ) / π ) = 0 ) |
| 134 | 64 66 69 133 | diveq0d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( ℑ ‘ 𝑥 ) = 0 ) |
| 135 | reim0b | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) = 0 ) ) | |
| 136 | 135 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) = 0 ) ) |
| 137 | 134 136 | mpbird | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 138 | 137 | rpefcld | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) ∧ ( exp ‘ 𝑥 ) ∈ ℝ ) → ( exp ‘ 𝑥 ) ∈ ℝ+ ) |
| 139 | 138 | ex | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( ( exp ‘ 𝑥 ) ∈ ℝ → ( exp ‘ 𝑥 ) ∈ ℝ+ ) ) |
| 140 | 1 | ellogdm | ⊢ ( ( exp ‘ 𝑥 ) ∈ 𝐷 ↔ ( ( exp ‘ 𝑥 ) ∈ ℂ ∧ ( ( exp ‘ 𝑥 ) ∈ ℝ → ( exp ‘ 𝑥 ) ∈ ℝ+ ) ) ) |
| 141 | 62 139 140 | sylanbrc | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( exp ‘ 𝑥 ) ∈ 𝐷 ) |
| 142 | funfvima2 | ⊢ ( ( Fun log ∧ 𝐷 ⊆ dom log ) → ( ( exp ‘ 𝑥 ) ∈ 𝐷 → ( log ‘ ( exp ‘ 𝑥 ) ) ∈ ( log “ 𝐷 ) ) ) | |
| 143 | 9 13 142 | mp2an | ⊢ ( ( exp ‘ 𝑥 ) ∈ 𝐷 → ( log ‘ ( exp ‘ 𝑥 ) ) ∈ ( log “ 𝐷 ) ) |
| 144 | 141 143 | syl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → ( log ‘ ( exp ‘ 𝑥 ) ) ∈ ( log “ 𝐷 ) ) |
| 145 | 60 144 | eqeltrrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ( - π (,) π ) ) → 𝑥 ∈ ( log “ 𝐷 ) ) |
| 146 | 46 145 | sylbi | ⊢ ( 𝑥 ∈ ( ◡ ℑ “ ( - π (,) π ) ) → 𝑥 ∈ ( log “ 𝐷 ) ) |
| 147 | 146 | ssriv | ⊢ ( ◡ ℑ “ ( - π (,) π ) ) ⊆ ( log “ 𝐷 ) |
| 148 | 44 147 | eqssi | ⊢ ( log “ 𝐷 ) = ( ◡ ℑ “ ( - π (,) π ) ) |
| 149 | f1oeq3 | ⊢ ( ( log “ 𝐷 ) = ( ◡ ℑ “ ( - π (,) π ) ) → ( ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) ↔ ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( ◡ ℑ “ ( - π (,) π ) ) ) ) | |
| 150 | 148 149 | ax-mp | ⊢ ( ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) ↔ ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( ◡ ℑ “ ( - π (,) π ) ) ) |
| 151 | 7 150 | mpbi | ⊢ ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( ◡ ℑ “ ( - π (,) π ) ) |