This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| Assertion | logdmnrp | ⊢ ( 𝐴 ∈ 𝐷 → ¬ - 𝐴 ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | eldifn | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ¬ 𝐴 ∈ ( -∞ (,] 0 ) ) | |
| 3 | 2 1 | eleq2s | ⊢ ( 𝐴 ∈ 𝐷 → ¬ 𝐴 ∈ ( -∞ (,] 0 ) ) |
| 4 | rpre | ⊢ ( - 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ ) | |
| 5 | 1 | ellogdm | ⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
| 6 | 5 | simplbi | ⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ ) |
| 7 | negreb | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ∈ 𝐷 → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
| 9 | 4 8 | imbitrid | ⊢ ( 𝐴 ∈ 𝐷 → ( - 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 11 | 10 | mnfltd | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → -∞ < 𝐴 ) |
| 12 | rpgt0 | ⊢ ( - 𝐴 ∈ ℝ+ → 0 < - 𝐴 ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → 0 < - 𝐴 ) |
| 14 | 10 | lt0neg1d | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
| 15 | 13 14 | mpbird | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 < 0 ) |
| 16 | 0re | ⊢ 0 ∈ ℝ | |
| 17 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 → 𝐴 ≤ 0 ) ) | |
| 18 | 10 16 17 | sylancl | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → ( 𝐴 < 0 → 𝐴 ≤ 0 ) ) |
| 19 | 15 18 | mpd | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 ≤ 0 ) |
| 20 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 21 | elioc2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( 𝐴 ∈ ( -∞ (,] 0 ) ↔ ( 𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0 ) ) ) | |
| 22 | 20 16 21 | mp2an | ⊢ ( 𝐴 ∈ ( -∞ (,] 0 ) ↔ ( 𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0 ) ) |
| 23 | 10 11 19 22 | syl3anbrc | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ( -∞ (,] 0 ) ) |
| 24 | 3 23 | mtand | ⊢ ( 𝐴 ∈ 𝐷 → ¬ - 𝐴 ∈ ℝ+ ) |