This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ratio is zero iff the numerator is zero. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| divcld.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| diveq0d.4 | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) = 0 ) | ||
| Assertion | diveq0d | ⊢ ( 𝜑 → 𝐴 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | divcld.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 4 | diveq0d.4 | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) = 0 ) | |
| 5 | diveq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) = 0 ↔ 𝐴 = 0 ) ) | |
| 6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) = 0 ↔ 𝐴 = 0 ) ) |
| 7 | 4 6 | mpbid | ⊢ ( 𝜑 → 𝐴 = 0 ) |