This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| Assertion | ellogdm | ⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ 𝐷 ↔ 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 3 | eldif | ⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ( -∞ (,] 0 ) ) ) | |
| 4 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | elioc2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( 𝐴 ∈ ( -∞ (,] 0 ) ↔ ( 𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0 ) ) ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( 𝐴 ∈ ( -∞ (,] 0 ) ↔ ( 𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0 ) ) |
| 8 | df-3an | ⊢ ( ( 𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0 ) ↔ ( ( 𝐴 ∈ ℝ ∧ -∞ < 𝐴 ) ∧ 𝐴 ≤ 0 ) ) | |
| 9 | mnflt | ⊢ ( 𝐴 ∈ ℝ → -∞ < 𝐴 ) | |
| 10 | 9 | pm4.71i | ⊢ ( 𝐴 ∈ ℝ ↔ ( 𝐴 ∈ ℝ ∧ -∞ < 𝐴 ) ) |
| 11 | 10 | anbi1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) ↔ ( ( 𝐴 ∈ ℝ ∧ -∞ < 𝐴 ) ∧ 𝐴 ≤ 0 ) ) |
| 12 | lenlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 ≤ 0 ↔ ¬ 0 < 𝐴 ) ) | |
| 13 | 5 12 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ ¬ 0 < 𝐴 ) ) |
| 14 | elrp | ⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) | |
| 15 | 14 | baib | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℝ+ ↔ 0 < 𝐴 ) ) |
| 16 | 15 | notbid | ⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 ∈ ℝ+ ↔ ¬ 0 < 𝐴 ) ) |
| 17 | 13 16 | bitr4d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ ¬ 𝐴 ∈ ℝ+ ) ) |
| 18 | 17 | pm5.32i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) ↔ ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+ ) ) |
| 19 | 11 18 | bitr3i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ -∞ < 𝐴 ) ∧ 𝐴 ≤ 0 ) ↔ ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+ ) ) |
| 20 | 7 8 19 | 3bitri | ⊢ ( 𝐴 ∈ ( -∞ (,] 0 ) ↔ ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+ ) ) |
| 21 | 20 | notbii | ⊢ ( ¬ 𝐴 ∈ ( -∞ (,] 0 ) ↔ ¬ ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+ ) ) |
| 22 | iman | ⊢ ( ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ↔ ¬ ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℝ+ ) ) | |
| 23 | 21 22 | bitr4i | ⊢ ( ¬ 𝐴 ∈ ( -∞ (,] 0 ) ↔ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
| 24 | 23 | anbi2i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ( -∞ (,] 0 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
| 25 | 2 3 24 | 3bitri | ⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |