This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a number has imaginary part equal to _pi , then it is on the negative real axis and vice-versa. (Contributed by Mario Carneiro, 23-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lognegb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logneg | ⊢ ( - 𝐴 ∈ ℝ+ → ( log ‘ - - 𝐴 ) = ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( log ‘ - - 𝐴 ) ) = ( ℑ ‘ ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) ) |
| 3 | relogcl | ⊢ ( - 𝐴 ∈ ℝ+ → ( log ‘ - 𝐴 ) ∈ ℝ ) | |
| 4 | pire | ⊢ π ∈ ℝ | |
| 5 | crim | ⊢ ( ( ( log ‘ - 𝐴 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ℑ ‘ ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) = π ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( ( log ‘ - 𝐴 ) + ( i · π ) ) ) = π ) |
| 7 | 2 6 | eqtrd | ⊢ ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( log ‘ - - 𝐴 ) ) = π ) |
| 8 | negneg | ⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - - 𝐴 = 𝐴 ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ - - 𝐴 ) = ( log ‘ 𝐴 ) ) |
| 11 | 10 | fveqeq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ ( log ‘ - - 𝐴 ) ) = π ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
| 12 | 7 11 | imbitrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ → ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
| 13 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 14 | 13 | replimd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) = ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 15 | 14 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = ( exp ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 16 | eflog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 17 | 13 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 18 | 17 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 19 | ax-icn | ⊢ i ∈ ℂ | |
| 20 | 13 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 21 | 20 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 22 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 23 | 19 21 22 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 24 | efadd | ⊢ ( ( ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ∧ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) → ( exp ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | |
| 25 | 18 23 24 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( ℜ ‘ ( log ‘ 𝐴 ) ) + ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 26 | 15 16 25 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 27 | oveq2 | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( i · π ) ) | |
| 28 | 27 | fveq2d | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( i · π ) ) ) |
| 29 | efipi | ⊢ ( exp ‘ ( i · π ) ) = - 1 | |
| 30 | 28 29 | eqtrdi | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = - 1 ) |
| 31 | 30 | oveq2d | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ) |
| 32 | 31 | eqeq2d | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ↔ 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ) ) |
| 33 | 26 32 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ) ) |
| 34 | 17 | rpefcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
| 35 | 34 | rpcnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 36 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 37 | mulcom | ⊢ ( ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = ( - 1 · ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) ) | |
| 38 | 35 36 37 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = ( - 1 · ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 39 | 35 | mulm1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 1 · ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 40 | 38 39 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 41 | 40 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = - - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 42 | 35 | negnegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - - ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 43 | 41 42 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) = ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 44 | 43 34 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ∈ ℝ+ ) |
| 45 | negeq | ⊢ ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) → - 𝐴 = - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ) | |
| 46 | 45 | eleq1d | ⊢ ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) → ( - 𝐴 ∈ ℝ+ ↔ - ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) ∈ ℝ+ ) ) |
| 47 | 44 46 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 = ( ( exp ‘ ( ℜ ‘ ( log ‘ 𝐴 ) ) ) · - 1 ) → - 𝐴 ∈ ℝ+ ) ) |
| 48 | 33 47 | syld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → - 𝐴 ∈ ℝ+ ) ) |
| 49 | 12 48 | impbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |