This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efeul | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 3 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 4 | 3 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 5 | ax-icn | ⊢ i ∈ ℂ | |
| 6 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 7 | 6 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 8 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 9 | 5 7 8 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 10 | efadd | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) | |
| 11 | 4 9 10 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 12 | efival | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) | |
| 13 | 7 12 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 15 | 2 11 14 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) ) |