This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer ordering relation. (Contributed by NM, 10-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zleltp1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ 𝑀 < ( 𝑁 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 2 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 3 | 1re | ⊢ 1 ∈ ℝ | |
| 4 | leadd1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 + 1 ) ≤ ( 𝑁 + 1 ) ) ) | |
| 5 | 3 4 | mp3an3 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 + 1 ) ≤ ( 𝑁 + 1 ) ) ) |
| 6 | 1 2 5 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 + 1 ) ≤ ( 𝑁 + 1 ) ) ) |
| 7 | peano2z | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℤ ) | |
| 8 | zltp1le | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( 𝑀 < ( 𝑁 + 1 ) ↔ ( 𝑀 + 1 ) ≤ ( 𝑁 + 1 ) ) ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < ( 𝑁 + 1 ) ↔ ( 𝑀 + 1 ) ≤ ( 𝑁 + 1 ) ) ) |
| 10 | 6 9 | bitr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ 𝑀 < ( 𝑁 + 1 ) ) ) |