This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number whose sine is zero is an integer multiple of _pi . (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sineq0 | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) = 0 ↔ ( 𝐴 / π ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sinval | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) = 0 ↔ ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = 0 ) ) |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 6 | efcl | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 8 | negicn | ⊢ - i ∈ ℂ | |
| 9 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) ∈ ℂ ) |
| 11 | efcl | ⊢ ( ( - i · 𝐴 ) ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) ∈ ℂ ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) ∈ ℂ ) |
| 13 | 7 12 | subcld | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) ∈ ℂ ) |
| 14 | 2mulicn | ⊢ ( 2 · i ) ∈ ℂ | |
| 15 | 2muline0 | ⊢ ( 2 · i ) ≠ 0 | |
| 16 | diveq0 | ⊢ ( ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ∧ ( 2 · i ) ≠ 0 ) → ( ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = 0 ) ) | |
| 17 | 14 15 16 | mp3an23 | ⊢ ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) ∈ ℂ → ( ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = 0 ) ) |
| 18 | 13 17 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = 0 ) ) |
| 19 | 7 12 | subeq0ad | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = 0 ↔ ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 20 | 2 18 19 | 3bitrd | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) = 0 ↔ ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 21 | oveq2 | ⊢ ( ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( - i · 𝐴 ) ) → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐴 ) ) ) ) | |
| 22 | 2cn | ⊢ 2 ∈ ℂ | |
| 23 | mul12 | ⊢ ( ( i ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · ( 2 · 𝐴 ) ) = ( 2 · ( i · 𝐴 ) ) ) | |
| 24 | 3 22 23 | mp3an12 | ⊢ ( 𝐴 ∈ ℂ → ( i · ( 2 · 𝐴 ) ) = ( 2 · ( i · 𝐴 ) ) ) |
| 25 | 5 | 2timesd | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
| 26 | 24 25 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( i · ( 2 · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
| 27 | 26 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) = ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) ) |
| 28 | efadd | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) ) | |
| 29 | 5 5 28 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 30 | 27 29 | eqtr2d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) = ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) |
| 31 | efadd | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( - i · 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐴 ) ) ) ) | |
| 32 | 5 10 31 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 33 | 3 | negidi | ⊢ ( i + - i ) = 0 |
| 34 | 33 | oveq1i | ⊢ ( ( i + - i ) · 𝐴 ) = ( 0 · 𝐴 ) |
| 35 | adddir | ⊢ ( ( i ∈ ℂ ∧ - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i + - i ) · 𝐴 ) = ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) | |
| 36 | 3 8 35 | mp3an12 | ⊢ ( 𝐴 ∈ ℂ → ( ( i + - i ) · 𝐴 ) = ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) |
| 37 | mul02 | ⊢ ( 𝐴 ∈ ℂ → ( 0 · 𝐴 ) = 0 ) | |
| 38 | 34 36 37 | 3eqtr3a | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) = 0 ) |
| 39 | 38 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) = ( exp ‘ 0 ) ) |
| 40 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 41 | 39 40 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) = 1 ) |
| 42 | 32 41 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐴 ) ) ) = 1 ) |
| 43 | 30 42 | eqeq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐴 ) ) ) ↔ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) = 1 ) ) |
| 44 | fveq2 | ⊢ ( ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) = 1 → ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = ( abs ‘ 1 ) ) | |
| 45 | 43 44 | biimtrdi | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐴 ) ) ) → ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = ( abs ‘ 1 ) ) ) |
| 46 | 21 45 | syl5 | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( - i · 𝐴 ) ) → ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = ( abs ‘ 1 ) ) ) |
| 47 | 20 46 | sylbid | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) = 0 → ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = ( abs ‘ 1 ) ) ) |
| 48 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 49 | 48 | eqeq2i | ⊢ ( ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = ( abs ‘ 1 ) ↔ ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = 1 ) |
| 50 | 2re | ⊢ 2 ∈ ℝ | |
| 51 | 2ne0 | ⊢ 2 ≠ 0 | |
| 52 | mulre | ⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0 ) → ( 𝐴 ∈ ℝ ↔ ( 2 · 𝐴 ) ∈ ℝ ) ) | |
| 53 | 50 51 52 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( 2 · 𝐴 ) ∈ ℝ ) ) |
| 54 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 2 · 𝐴 ) ∈ ℂ ) | |
| 55 | 22 54 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) ∈ ℂ ) |
| 56 | absefib | ⊢ ( ( 2 · 𝐴 ) ∈ ℂ → ( ( 2 · 𝐴 ) ∈ ℝ ↔ ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = 1 ) ) | |
| 57 | 55 56 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · 𝐴 ) ∈ ℝ ↔ ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = 1 ) ) |
| 58 | 53 57 | bitr2d | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = 1 ↔ 𝐴 ∈ ℝ ) ) |
| 59 | 49 58 | bitrid | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = ( abs ‘ 1 ) ↔ 𝐴 ∈ ℝ ) ) |
| 60 | 47 59 | sylibd | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) = 0 → 𝐴 ∈ ℝ ) ) |
| 61 | 60 | imp | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ ) |
| 62 | pirp | ⊢ π ∈ ℝ+ | |
| 63 | modval | ⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ) → ( 𝐴 mod π ) = ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) | |
| 64 | 61 62 63 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 mod π ) = ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) |
| 65 | picn | ⊢ π ∈ ℂ | |
| 66 | pire | ⊢ π ∈ ℝ | |
| 67 | pipos | ⊢ 0 < π | |
| 68 | 66 67 | gt0ne0ii | ⊢ π ≠ 0 |
| 69 | redivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ π ≠ 0 ) → ( 𝐴 / π ) ∈ ℝ ) | |
| 70 | 66 68 69 | mp3an23 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / π ) ∈ ℝ ) |
| 71 | 61 70 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 / π ) ∈ ℝ ) |
| 72 | 71 | flcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℤ ) |
| 73 | 72 | zcnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℂ ) |
| 74 | mulcl | ⊢ ( ( π ∈ ℂ ∧ ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℂ ) → ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ∈ ℂ ) | |
| 75 | 65 73 74 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ∈ ℂ ) |
| 76 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ∈ ℂ ) → ( 𝐴 + - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) = ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) | |
| 77 | 75 76 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 + - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) = ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) |
| 78 | mulcom | ⊢ ( ( π ∈ ℂ ∧ ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℂ ) → ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) = ( ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) | |
| 79 | 65 73 78 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) = ( ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) |
| 80 | 79 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) = - ( ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) |
| 81 | mulneg1 | ⊢ ( ( ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℂ ∧ π ∈ ℂ ) → ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) = - ( ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) | |
| 82 | 73 65 81 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) = - ( ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) |
| 83 | 80 82 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) = ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) |
| 84 | 83 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 + - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) = ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) |
| 85 | 64 77 84 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 mod π ) = ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) |
| 86 | 85 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( sin ‘ ( 𝐴 mod π ) ) = ( sin ‘ ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) ) |
| 87 | 86 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) = ( abs ‘ ( sin ‘ ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) ) ) |
| 88 | 72 | znegcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → - ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℤ ) |
| 89 | abssinper | ⊢ ( ( 𝐴 ∈ ℂ ∧ - ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℤ ) → ( abs ‘ ( sin ‘ ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) ) = ( abs ‘ ( sin ‘ 𝐴 ) ) ) | |
| 90 | 88 89 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) ) = ( abs ‘ ( sin ‘ 𝐴 ) ) ) |
| 91 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( sin ‘ 𝐴 ) = 0 ) | |
| 92 | 91 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ 𝐴 ) ) = ( abs ‘ 0 ) ) |
| 93 | 87 90 92 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) = ( abs ‘ 0 ) ) |
| 94 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 95 | 93 94 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) = 0 ) |
| 96 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ) → ( 𝐴 mod π ) ∈ ℝ ) | |
| 97 | 61 62 96 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 mod π ) ∈ ℝ ) |
| 98 | modlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ) → ( 𝐴 mod π ) < π ) | |
| 99 | 61 62 98 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 mod π ) < π ) |
| 100 | 97 99 | jca | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( 𝐴 mod π ) ∈ ℝ ∧ ( 𝐴 mod π ) < π ) ) |
| 101 | 100 | biantrurd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 0 < ( 𝐴 mod π ) ↔ ( ( ( 𝐴 mod π ) ∈ ℝ ∧ ( 𝐴 mod π ) < π ) ∧ 0 < ( 𝐴 mod π ) ) ) ) |
| 102 | 0re | ⊢ 0 ∈ ℝ | |
| 103 | rexr | ⊢ ( 0 ∈ ℝ → 0 ∈ ℝ* ) | |
| 104 | rexr | ⊢ ( π ∈ ℝ → π ∈ ℝ* ) | |
| 105 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) ↔ ( ( 𝐴 mod π ) ∈ ℝ ∧ 0 < ( 𝐴 mod π ) ∧ ( 𝐴 mod π ) < π ) ) ) | |
| 106 | 103 104 105 | syl2an | ⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) ↔ ( ( 𝐴 mod π ) ∈ ℝ ∧ 0 < ( 𝐴 mod π ) ∧ ( 𝐴 mod π ) < π ) ) ) |
| 107 | 102 66 106 | mp2an | ⊢ ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) ↔ ( ( 𝐴 mod π ) ∈ ℝ ∧ 0 < ( 𝐴 mod π ) ∧ ( 𝐴 mod π ) < π ) ) |
| 108 | 3anan32 | ⊢ ( ( ( 𝐴 mod π ) ∈ ℝ ∧ 0 < ( 𝐴 mod π ) ∧ ( 𝐴 mod π ) < π ) ↔ ( ( ( 𝐴 mod π ) ∈ ℝ ∧ ( 𝐴 mod π ) < π ) ∧ 0 < ( 𝐴 mod π ) ) ) | |
| 109 | 107 108 | bitri | ⊢ ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) ↔ ( ( ( 𝐴 mod π ) ∈ ℝ ∧ ( 𝐴 mod π ) < π ) ∧ 0 < ( 𝐴 mod π ) ) ) |
| 110 | 101 109 | bitr4di | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 0 < ( 𝐴 mod π ) ↔ ( 𝐴 mod π ) ∈ ( 0 (,) π ) ) ) |
| 111 | sinq12gt0 | ⊢ ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) → 0 < ( sin ‘ ( 𝐴 mod π ) ) ) | |
| 112 | elioore | ⊢ ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) → ( 𝐴 mod π ) ∈ ℝ ) | |
| 113 | 112 | resincld | ⊢ ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) → ( sin ‘ ( 𝐴 mod π ) ) ∈ ℝ ) |
| 114 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( sin ‘ ( 𝐴 mod π ) ) ∈ ℝ ) → ( 0 < ( sin ‘ ( 𝐴 mod π ) ) → 0 ≤ ( sin ‘ ( 𝐴 mod π ) ) ) ) | |
| 115 | 102 113 114 | sylancr | ⊢ ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) → ( 0 < ( sin ‘ ( 𝐴 mod π ) ) → 0 ≤ ( sin ‘ ( 𝐴 mod π ) ) ) ) |
| 116 | 111 115 | mpd | ⊢ ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) → 0 ≤ ( sin ‘ ( 𝐴 mod π ) ) ) |
| 117 | 113 116 | absidd | ⊢ ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) → ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) = ( sin ‘ ( 𝐴 mod π ) ) ) |
| 118 | 111 117 | breqtrrd | ⊢ ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) → 0 < ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) ) |
| 119 | 110 118 | biimtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 0 < ( 𝐴 mod π ) → 0 < ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) ) ) |
| 120 | ltne | ⊢ ( ( 0 ∈ ℝ ∧ 0 < ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) ) → ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) ≠ 0 ) | |
| 121 | 102 120 | mpan | ⊢ ( 0 < ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) → ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) ≠ 0 ) |
| 122 | 119 121 | syl6 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 0 < ( 𝐴 mod π ) → ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) ≠ 0 ) ) |
| 123 | 122 | necon2bd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) = 0 → ¬ 0 < ( 𝐴 mod π ) ) ) |
| 124 | 95 123 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ¬ 0 < ( 𝐴 mod π ) ) |
| 125 | modge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod π ) ) | |
| 126 | 61 62 125 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → 0 ≤ ( 𝐴 mod π ) ) |
| 127 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 mod π ) ∈ ℝ ) → ( 0 ≤ ( 𝐴 mod π ) ↔ ( 0 < ( 𝐴 mod π ) ∨ 0 = ( 𝐴 mod π ) ) ) ) | |
| 128 | 102 97 127 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 0 ≤ ( 𝐴 mod π ) ↔ ( 0 < ( 𝐴 mod π ) ∨ 0 = ( 𝐴 mod π ) ) ) ) |
| 129 | 126 128 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 0 < ( 𝐴 mod π ) ∨ 0 = ( 𝐴 mod π ) ) ) |
| 130 | 129 | ord | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ¬ 0 < ( 𝐴 mod π ) → 0 = ( 𝐴 mod π ) ) ) |
| 131 | 124 130 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → 0 = ( 𝐴 mod π ) ) |
| 132 | 131 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 mod π ) = 0 ) |
| 133 | mod0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ) → ( ( 𝐴 mod π ) = 0 ↔ ( 𝐴 / π ) ∈ ℤ ) ) | |
| 134 | 61 62 133 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( 𝐴 mod π ) = 0 ↔ ( 𝐴 / π ) ∈ ℤ ) ) |
| 135 | 132 134 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 / π ) ∈ ℤ ) |
| 136 | divcan1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0 ) → ( ( 𝐴 / π ) · π ) = 𝐴 ) | |
| 137 | 65 68 136 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / π ) · π ) = 𝐴 ) |
| 138 | 137 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( 𝐴 / π ) · π ) ) = ( sin ‘ 𝐴 ) ) |
| 139 | sinkpi | ⊢ ( ( 𝐴 / π ) ∈ ℤ → ( sin ‘ ( ( 𝐴 / π ) · π ) ) = 0 ) | |
| 140 | 138 139 | sylan9req | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 / π ) ∈ ℤ ) → ( sin ‘ 𝐴 ) = 0 ) |
| 141 | 135 140 | impbida | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) = 0 ↔ ( 𝐴 / π ) ∈ ℤ ) ) |