This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lcmgcd and lcmdvds . Prove them for positive M , N , and K . (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmgcdlem | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( abs ‘ ( 𝑀 · 𝑁 ) ) ∧ ( ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnmulcl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℕ ) | |
| 2 | 1 | nnred | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℝ ) |
| 3 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 5 | 4 | zred | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 6 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 8 | 7 | zred | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 9 | 0red | ⊢ ( 𝑀 ∈ ℕ → 0 ∈ ℝ ) | |
| 10 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 11 | nngt0 | ⊢ ( 𝑀 ∈ ℕ → 0 < 𝑀 ) | |
| 12 | 9 10 11 | ltled | ⊢ ( 𝑀 ∈ ℕ → 0 ≤ 𝑀 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑀 ) |
| 14 | 0red | ⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) | |
| 15 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 16 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 17 | 14 15 16 | ltled | ⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑁 ) |
| 19 | 5 8 13 18 | mulge0d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ ( 𝑀 · 𝑁 ) ) |
| 20 | 2 19 | absidd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) |
| 21 | 3 6 | anim12i | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 22 | nnne0 | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ≠ 0 ) | |
| 23 | 22 | neneqd | ⊢ ( 𝑀 ∈ ℕ → ¬ 𝑀 = 0 ) |
| 24 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 25 | 24 | neneqd | ⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
| 26 | 23 25 | anim12i | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0 ) ) |
| 27 | ioran | ⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ( ¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0 ) ) | |
| 28 | 26 27 | sylibr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) |
| 29 | lcmn0val | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } , ℝ , < ) ) | |
| 30 | 21 28 29 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } , ℝ , < ) ) |
| 31 | ltso | ⊢ < Or ℝ | |
| 32 | 31 | a1i | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → < Or ℝ ) |
| 33 | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 34 | 33 | simpld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
| 35 | gcdcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) | |
| 36 | 35 | nn0zd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
| 37 | dvdsmultr1 | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 38 | 37 | 3expb | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 39 | 36 38 | mpancom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 40 | 34 39 | mpd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 41 | 21 40 | syl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 42 | gcdnncl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ ) | |
| 43 | nndivdvds | ⊢ ( ( ( 𝑀 · 𝑁 ) ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ↔ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) ) | |
| 44 | 1 42 43 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ↔ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) ) |
| 45 | 41 44 | mpbid | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) |
| 46 | 45 | nnred | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℝ ) |
| 47 | breq2 | ⊢ ( 𝑥 = ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) → ( 𝑀 ∥ 𝑥 ↔ 𝑀 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ) | |
| 48 | breq2 | ⊢ ( 𝑥 = ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) → ( 𝑁 ∥ 𝑥 ↔ 𝑁 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ) | |
| 49 | 47 48 | anbi12d | ⊢ ( 𝑥 = ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) → ( ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) ↔ ( 𝑀 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∧ 𝑁 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ) ) |
| 50 | 33 | simprd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 51 | 21 50 | syl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 52 | 21 36 | syl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
| 53 | 42 | nnne0d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ≠ 0 ) |
| 54 | dvdsval2 | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) | |
| 55 | 52 53 7 54 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
| 56 | 51 55 | mpbid | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 57 | dvdsmul1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) → 𝑀 ∥ ( 𝑀 · ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) | |
| 58 | 4 56 57 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( 𝑀 · ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 59 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
| 60 | 59 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 61 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 62 | 61 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 63 | 42 | nncnd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℂ ) |
| 64 | 60 62 63 53 | divassd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 · ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 65 | 58 64 | breqtrrd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) |
| 66 | 21 34 | syl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
| 67 | dvdsval2 | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ≠ 0 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ↔ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) | |
| 68 | 52 53 4 67 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ↔ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
| 69 | 66 68 | mpbid | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 70 | dvdsmul1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) → 𝑁 ∥ ( 𝑁 · ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) ) | |
| 71 | 7 69 70 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∥ ( 𝑁 · ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 72 | 60 62 | mulcomd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 73 | 72 | oveq1d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( ( 𝑁 · 𝑀 ) / ( 𝑀 gcd 𝑁 ) ) ) |
| 74 | 62 60 63 53 | divassd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 · 𝑀 ) / ( 𝑀 gcd 𝑁 ) ) = ( 𝑁 · ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 75 | 73 74 | eqtrd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( 𝑁 · ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 76 | 71 75 | breqtrrd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) |
| 77 | 65 76 | jca | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∧ 𝑁 ∥ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 78 | 49 45 77 | elrabd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ) |
| 79 | 46 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℝ ) |
| 80 | elrabi | ⊢ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } → 𝑛 ∈ ℕ ) | |
| 81 | 80 | nnred | ⊢ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } → 𝑛 ∈ ℝ ) |
| 82 | 81 | adantl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ) → 𝑛 ∈ ℝ ) |
| 83 | breq2 | ⊢ ( 𝑥 = 𝑛 → ( 𝑀 ∥ 𝑥 ↔ 𝑀 ∥ 𝑛 ) ) | |
| 84 | breq2 | ⊢ ( 𝑥 = 𝑛 → ( 𝑁 ∥ 𝑥 ↔ 𝑁 ∥ 𝑛 ) ) | |
| 85 | 83 84 | anbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) ↔ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) |
| 86 | 85 | elrab | ⊢ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ↔ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) |
| 87 | bezout | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) | |
| 88 | 21 87 | syl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) |
| 89 | 88 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) |
| 90 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 91 | 90 | ad2antlr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑛 ∈ ℂ ) |
| 92 | 1 | nncnd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℂ ) |
| 93 | 92 | ad2antrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 · 𝑁 ) ∈ ℂ ) |
| 94 | 63 | ad2antrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 gcd 𝑁 ) ∈ ℂ ) |
| 95 | 60 | ad2antrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑀 ∈ ℂ ) |
| 96 | 61 | ad3antlr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑁 ∈ ℂ ) |
| 97 | 22 | ad3antrrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑀 ≠ 0 ) |
| 98 | 24 | ad3antlr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑁 ≠ 0 ) |
| 99 | 95 96 97 98 | mulne0d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 · 𝑁 ) ≠ 0 ) |
| 100 | 53 | ad2antrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 gcd 𝑁 ) ≠ 0 ) |
| 101 | 91 93 94 99 100 | divdiv2d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( 𝑛 · ( 𝑀 gcd 𝑁 ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 102 | 101 | adantr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( 𝑛 · ( 𝑀 gcd 𝑁 ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 103 | oveq2 | ⊢ ( ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ( 𝑛 · ( 𝑀 gcd 𝑁 ) ) = ( 𝑛 · ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) ) | |
| 104 | 103 | oveq1d | ⊢ ( ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ( ( 𝑛 · ( 𝑀 gcd 𝑁 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑛 · ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 105 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 106 | 105 | ad2antrl | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑥 ∈ ℂ ) |
| 107 | 95 106 | mulcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 · 𝑥 ) ∈ ℂ ) |
| 108 | zcn | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) | |
| 109 | 108 | ad2antll | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑦 ∈ ℂ ) |
| 110 | 96 109 | mulcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑁 · 𝑦 ) ∈ ℂ ) |
| 111 | 91 107 110 | adddid | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) = ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) + ( 𝑛 · ( 𝑁 · 𝑦 ) ) ) ) |
| 112 | 111 | oveq1d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) / ( 𝑀 · 𝑁 ) ) = ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) + ( 𝑛 · ( 𝑁 · 𝑦 ) ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 113 | 91 107 | mulcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · ( 𝑀 · 𝑥 ) ) ∈ ℂ ) |
| 114 | 91 110 | mulcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · ( 𝑁 · 𝑦 ) ) ∈ ℂ ) |
| 115 | 113 114 93 99 | divdird | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) + ( 𝑛 · ( 𝑁 · 𝑦 ) ) ) / ( 𝑀 · 𝑁 ) ) = ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) + ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) ) |
| 116 | 112 115 | eqtrd | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) / ( 𝑀 · 𝑁 ) ) = ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) + ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) ) |
| 117 | 104 116 | sylan9eqr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( ( 𝑛 · ( 𝑀 gcd 𝑁 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) + ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) ) |
| 118 | 91 95 106 | mul12d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · ( 𝑀 · 𝑥 ) ) = ( 𝑀 · ( 𝑛 · 𝑥 ) ) ) |
| 119 | 118 | oveq1d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑀 · ( 𝑛 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 120 | 91 106 | mulcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · 𝑥 ) ∈ ℂ ) |
| 121 | 120 96 95 98 97 | divcan5d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 · ( 𝑛 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑛 · 𝑥 ) / 𝑁 ) ) |
| 122 | 119 121 | eqtrd | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑛 · 𝑥 ) / 𝑁 ) ) |
| 123 | 91 96 109 | mul12d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · ( 𝑁 · 𝑦 ) ) = ( 𝑁 · ( 𝑛 · 𝑦 ) ) ) |
| 124 | 123 | oveq1d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑁 · ( 𝑛 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) |
| 125 | 72 | ad2antrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 126 | 125 | oveq2d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑁 · ( 𝑛 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑁 · ( 𝑛 · 𝑦 ) ) / ( 𝑁 · 𝑀 ) ) ) |
| 127 | 91 109 | mulcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · 𝑦 ) ∈ ℂ ) |
| 128 | 127 95 96 97 98 | divcan5d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑁 · ( 𝑛 · 𝑦 ) ) / ( 𝑁 · 𝑀 ) ) = ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) |
| 129 | 124 126 128 | 3eqtrd | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) = ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) |
| 130 | 122 129 | oveq12d | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) + ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) |
| 131 | 130 | adantr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( ( ( 𝑛 · ( 𝑀 · 𝑥 ) ) / ( 𝑀 · 𝑁 ) ) + ( ( 𝑛 · ( 𝑁 · 𝑦 ) ) / ( 𝑀 · 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) |
| 132 | 102 117 131 | 3eqtrd | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) |
| 133 | 132 | ex | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) ) |
| 134 | 133 | adantlrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) ) |
| 135 | 134 | imp | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) = ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ) |
| 136 | 6 | ad3antlr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) |
| 137 | nnz | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) | |
| 138 | 137 | ad2antlr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑛 ∈ ℤ ) |
| 139 | simprl | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑥 ∈ ℤ ) | |
| 140 | dvdsmultr1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑁 ∥ 𝑛 → 𝑁 ∥ ( 𝑛 · 𝑥 ) ) ) | |
| 141 | 136 138 139 140 | syl3anc | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑛 → 𝑁 ∥ ( 𝑛 · 𝑥 ) ) ) |
| 142 | 138 139 | zmulcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · 𝑥 ) ∈ ℤ ) |
| 143 | dvdsval2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ ( 𝑛 · 𝑥 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝑛 · 𝑥 ) ↔ ( ( 𝑛 · 𝑥 ) / 𝑁 ) ∈ ℤ ) ) | |
| 144 | 136 98 142 143 | syl3anc | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑁 ∥ ( 𝑛 · 𝑥 ) ↔ ( ( 𝑛 · 𝑥 ) / 𝑁 ) ∈ ℤ ) ) |
| 145 | 141 144 | sylibd | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑁 ∥ 𝑛 → ( ( 𝑛 · 𝑥 ) / 𝑁 ) ∈ ℤ ) ) |
| 146 | 145 | adantld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( ( 𝑛 · 𝑥 ) / 𝑁 ) ∈ ℤ ) ) |
| 147 | 146 | 3impia | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) → ( ( 𝑛 · 𝑥 ) / 𝑁 ) ∈ ℤ ) |
| 148 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑀 ∈ ℤ ) |
| 149 | simprr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑦 ∈ ℤ ) | |
| 150 | dvdsmultr1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑀 ∥ 𝑛 → 𝑀 ∥ ( 𝑛 · 𝑦 ) ) ) | |
| 151 | 148 138 149 150 | syl3anc | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑛 → 𝑀 ∥ ( 𝑛 · 𝑦 ) ) ) |
| 152 | 138 149 | zmulcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑛 · 𝑦 ) ∈ ℤ ) |
| 153 | dvdsval2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ( 𝑛 · 𝑦 ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝑛 · 𝑦 ) ↔ ( ( 𝑛 · 𝑦 ) / 𝑀 ) ∈ ℤ ) ) | |
| 154 | 148 97 152 153 | syl3anc | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 ∥ ( 𝑛 · 𝑦 ) ↔ ( ( 𝑛 · 𝑦 ) / 𝑀 ) ∈ ℤ ) ) |
| 155 | 151 154 | sylibd | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑀 ∥ 𝑛 → ( ( 𝑛 · 𝑦 ) / 𝑀 ) ∈ ℤ ) ) |
| 156 | 155 | adantrd | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( ( 𝑛 · 𝑦 ) / 𝑀 ) ∈ ℤ ) ) |
| 157 | 156 | 3impia | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) → ( ( 𝑛 · 𝑦 ) / 𝑀 ) ∈ ℤ ) |
| 158 | 147 157 | zaddcld | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) |
| 159 | 158 | 3expia | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) ) |
| 160 | 159 | an32s | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) ) |
| 161 | 160 | impr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) |
| 162 | 161 | an32s | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) |
| 163 | 162 | adantr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( ( ( 𝑛 · 𝑥 ) / 𝑁 ) + ( ( 𝑛 · 𝑦 ) / 𝑀 ) ) ∈ ℤ ) |
| 164 | 135 163 | eqeltrd | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ∈ ℤ ) |
| 165 | 45 | nnzd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 166 | 165 | ad2antrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 167 | 1 | nnne0d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ≠ 0 ) |
| 168 | 92 63 167 53 | divne0d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≠ 0 ) |
| 169 | 168 | ad2antrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≠ 0 ) |
| 170 | 138 | adantlrr | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑛 ∈ ℤ ) |
| 171 | dvdsval2 | ⊢ ( ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ∧ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≠ 0 ∧ 𝑛 ∈ ℤ ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ∈ ℤ ) ) | |
| 172 | 166 169 170 171 | syl3anc | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ∈ ℤ ) ) |
| 173 | 172 | adantr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ( 𝑛 / ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) ∈ ℤ ) ) |
| 174 | 164 173 | mpbird | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 175 | 174 | ex | ⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) ) |
| 176 | 175 | reximdvva | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝑀 gcd 𝑁 ) = ( ( 𝑀 · 𝑥 ) + ( 𝑁 · 𝑦 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) ) |
| 177 | 89 176 | mpd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 178 | 1z | ⊢ 1 ∈ ℤ | |
| 179 | ne0i | ⊢ ( 1 ∈ ℤ → ℤ ≠ ∅ ) | |
| 180 | r19.9rzv | ⊢ ( ℤ ≠ ∅ → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) ) | |
| 181 | 178 179 180 | mp2b | ⊢ ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 182 | r19.9rzv | ⊢ ( ℤ ≠ ∅ → ( ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) ) | |
| 183 | 178 179 182 | mp2b | ⊢ ( ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 184 | 181 183 | bitri | ⊢ ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 185 | 177 184 | sylibr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ) |
| 186 | 165 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 187 | simprl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → 𝑛 ∈ ℕ ) | |
| 188 | dvdsle | ⊢ ( ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≤ 𝑛 ) ) | |
| 189 | 186 187 188 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≤ 𝑛 ) ) |
| 190 | 185 189 | mpd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≤ 𝑛 ) |
| 191 | 86 190 | sylan2b | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ≤ 𝑛 ) |
| 192 | 79 82 191 | lensymd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } ) → ¬ 𝑛 < ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) |
| 193 | 32 46 78 192 | infmin | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → inf ( { 𝑥 ∈ ℕ ∣ ( 𝑀 ∥ 𝑥 ∧ 𝑁 ∥ 𝑥 ) } , ℝ , < ) = ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ) |
| 194 | 30 193 | eqtr2d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| 195 | 194 45 | eqeltrrd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ ) |
| 196 | 195 | nncnd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 lcm 𝑁 ) ∈ ℂ ) |
| 197 | 92 196 63 53 | divmul3d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ↔ ( 𝑀 · 𝑁 ) = ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) ) ) |
| 198 | 194 197 | mpbid | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) = ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) ) |
| 199 | 20 198 | eqtr2d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
| 200 | simprl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) → 𝐾 ∈ ℕ ) | |
| 201 | eleq1 | ⊢ ( 𝑛 = 𝐾 → ( 𝑛 ∈ ℕ ↔ 𝐾 ∈ ℕ ) ) | |
| 202 | breq2 | ⊢ ( 𝑛 = 𝐾 → ( 𝑀 ∥ 𝑛 ↔ 𝑀 ∥ 𝐾 ) ) | |
| 203 | breq2 | ⊢ ( 𝑛 = 𝐾 → ( 𝑁 ∥ 𝑛 ↔ 𝑁 ∥ 𝐾 ) ) | |
| 204 | 202 203 | anbi12d | ⊢ ( 𝑛 = 𝐾 → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ↔ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) |
| 205 | 201 204 | anbi12d | ⊢ ( 𝑛 = 𝐾 → ( ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ↔ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) ) |
| 206 | 205 | anbi2d | ⊢ ( 𝑛 = 𝐾 → ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) ) ) |
| 207 | breq2 | ⊢ ( 𝑛 = 𝐾 → ( ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) ) | |
| 208 | 206 207 | imbi12d | ⊢ ( 𝑛 = 𝐾 → ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) ↔ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) ) ) |
| 209 | 194 | breq1d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) ) |
| 210 | 209 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( ( ( 𝑀 · 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) ∥ 𝑛 ↔ ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) ) |
| 211 | 185 210 | mpbid | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑛 ) |
| 212 | 208 211 | vtoclg | ⊢ ( 𝐾 ∈ ℕ → ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) ) |
| 213 | 200 212 | mpcom | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) |
| 214 | 213 | ex | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) ) |
| 215 | 199 214 | jca | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( abs ‘ ( 𝑀 · 𝑁 ) ) ∧ ( ( 𝐾 ∈ ℕ ∧ ( 𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾 ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝐾 ) ) ) |