This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bézout's identity: For any integers A and B , there are integers x , y such that ( A gcd B ) = A x. x + B x. y . This is Metamath 100 proof #60. (Contributed by Mario Carneiro, 22-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bezout | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | ⊢ ( 𝑧 = 𝑡 → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑡 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) | |
| 2 | 1 | 2rexbidv | ⊢ ( 𝑧 = 𝑡 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑡 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = 𝑢 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑢 ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝑥 = 𝑢 → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ) |
| 5 | 4 | eqeq2d | ⊢ ( 𝑥 = 𝑢 → ( 𝑡 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ) ) |
| 6 | oveq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝐵 · 𝑦 ) = ( 𝐵 · 𝑣 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
| 8 | 7 | eqeq2d | ⊢ ( 𝑦 = 𝑣 → ( 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 9 | 5 8 | cbvrex2vw | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑡 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
| 10 | 2 9 | bitrdi | ⊢ ( 𝑧 = 𝑡 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 11 | 10 | cbvrabv | ⊢ { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } = { 𝑡 ∈ ℕ ∣ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝑡 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) } |
| 12 | simpll | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝐴 ∈ ℤ ) | |
| 13 | simplr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝐵 ∈ ℤ ) | |
| 14 | eqid | ⊢ inf ( { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } , ℝ , < ) = inf ( { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } , ℝ , < ) | |
| 15 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) | |
| 16 | 11 12 13 14 15 | bezoutlem4 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } ) |
| 17 | eqeq1 | ⊢ ( 𝑧 = ( 𝐴 gcd 𝐵 ) → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) | |
| 18 | 17 | 2rexbidv | ⊢ ( 𝑧 = ( 𝐴 gcd 𝐵 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
| 19 | 18 | elrab | ⊢ ( ( 𝐴 gcd 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } ↔ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ ∧ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
| 20 | 19 | simprbi | ⊢ ( ( 𝐴 gcd 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
| 21 | 16 20 | syl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
| 22 | 21 | ex | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) ) |
| 23 | 0z | ⊢ 0 ∈ ℤ | |
| 24 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 25 | 0cn | ⊢ 0 ∈ ℂ | |
| 26 | 25 | mul01i | ⊢ ( 0 · 0 ) = 0 |
| 27 | 26 26 | oveq12i | ⊢ ( ( 0 · 0 ) + ( 0 · 0 ) ) = ( 0 + 0 ) |
| 28 | gcd0val | ⊢ ( 0 gcd 0 ) = 0 | |
| 29 | 24 27 28 | 3eqtr4ri | ⊢ ( 0 gcd 0 ) = ( ( 0 · 0 ) + ( 0 · 0 ) ) |
| 30 | oveq2 | ⊢ ( 𝑥 = 0 → ( 0 · 𝑥 ) = ( 0 · 0 ) ) | |
| 31 | 30 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) = ( ( 0 · 0 ) + ( 0 · 𝑦 ) ) ) |
| 32 | 31 | eqeq2d | ⊢ ( 𝑥 = 0 → ( ( 0 gcd 0 ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) ↔ ( 0 gcd 0 ) = ( ( 0 · 0 ) + ( 0 · 𝑦 ) ) ) ) |
| 33 | oveq2 | ⊢ ( 𝑦 = 0 → ( 0 · 𝑦 ) = ( 0 · 0 ) ) | |
| 34 | 33 | oveq2d | ⊢ ( 𝑦 = 0 → ( ( 0 · 0 ) + ( 0 · 𝑦 ) ) = ( ( 0 · 0 ) + ( 0 · 0 ) ) ) |
| 35 | 34 | eqeq2d | ⊢ ( 𝑦 = 0 → ( ( 0 gcd 0 ) = ( ( 0 · 0 ) + ( 0 · 𝑦 ) ) ↔ ( 0 gcd 0 ) = ( ( 0 · 0 ) + ( 0 · 0 ) ) ) ) |
| 36 | 32 35 | rspc2ev | ⊢ ( ( 0 ∈ ℤ ∧ 0 ∈ ℤ ∧ ( 0 gcd 0 ) = ( ( 0 · 0 ) + ( 0 · 0 ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 0 gcd 0 ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) ) |
| 37 | 23 23 29 36 | mp3an | ⊢ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 0 gcd 0 ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) |
| 38 | oveq12 | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 gcd 𝐵 ) = ( 0 gcd 0 ) ) | |
| 39 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 · 𝑥 ) = ( 0 · 𝑥 ) ) | |
| 40 | oveq1 | ⊢ ( 𝐵 = 0 → ( 𝐵 · 𝑦 ) = ( 0 · 𝑦 ) ) | |
| 41 | 39 40 | oveqan12d | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) ) |
| 42 | 38 41 | eqeq12d | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ( 0 gcd 0 ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) ) ) |
| 43 | 42 | 2rexbidv | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 0 gcd 0 ) = ( ( 0 · 𝑥 ) + ( 0 · 𝑦 ) ) ) ) |
| 44 | 37 43 | mpbiri | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
| 45 | 22 44 | pm2.61d2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |