This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmul1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( 𝑀 · 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 2 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 3 | mulcom | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 𝑁 · 𝑀 ) = ( 𝑀 · 𝑁 ) ) | |
| 4 | 1 2 3 | syl2anr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 · 𝑀 ) = ( 𝑀 · 𝑁 ) ) |
| 5 | zmulcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) | |
| 6 | dvds0lem | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) ∧ ( 𝑁 · 𝑀 ) = ( 𝑀 · 𝑁 ) ) → 𝑀 ∥ ( 𝑀 · 𝑁 ) ) | |
| 7 | 6 | ex | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( ( 𝑁 · 𝑀 ) = ( 𝑀 · 𝑁 ) → 𝑀 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 8 | 7 | 3com12 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( ( 𝑁 · 𝑀 ) = ( 𝑀 · 𝑁 ) → 𝑀 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 9 | 5 8 | mpd3an3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 · 𝑀 ) = ( 𝑀 · 𝑁 ) → 𝑀 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 10 | 4 9 | mpd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( 𝑀 · 𝑁 ) ) |