This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.9rzv | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) | |
| 2 | r19.3rzv | ⊢ ( 𝐴 ≠ ∅ → ( ¬ 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ) | |
| 3 | 2 | con1bid | ⊢ ( 𝐴 ≠ ∅ → ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ 𝜑 ) ) |
| 4 | 1 3 | bitr2id | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |