This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lcmgcd and lcmdvds . Prove them for positive M , N , and K . (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmgcdlem | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) /\ ( ( K e. NN /\ ( M || K /\ N || K ) ) -> ( M lcm N ) || K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnmulcl | |- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. NN ) |
|
| 2 | 1 | nnred | |- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. RR ) |
| 3 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 4 | 3 | adantr | |- ( ( M e. NN /\ N e. NN ) -> M e. ZZ ) |
| 5 | 4 | zred | |- ( ( M e. NN /\ N e. NN ) -> M e. RR ) |
| 6 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 7 | 6 | adantl | |- ( ( M e. NN /\ N e. NN ) -> N e. ZZ ) |
| 8 | 7 | zred | |- ( ( M e. NN /\ N e. NN ) -> N e. RR ) |
| 9 | 0red | |- ( M e. NN -> 0 e. RR ) |
|
| 10 | nnre | |- ( M e. NN -> M e. RR ) |
|
| 11 | nngt0 | |- ( M e. NN -> 0 < M ) |
|
| 12 | 9 10 11 | ltled | |- ( M e. NN -> 0 <_ M ) |
| 13 | 12 | adantr | |- ( ( M e. NN /\ N e. NN ) -> 0 <_ M ) |
| 14 | 0red | |- ( N e. NN -> 0 e. RR ) |
|
| 15 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 16 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 17 | 14 15 16 | ltled | |- ( N e. NN -> 0 <_ N ) |
| 18 | 17 | adantl | |- ( ( M e. NN /\ N e. NN ) -> 0 <_ N ) |
| 19 | 5 8 13 18 | mulge0d | |- ( ( M e. NN /\ N e. NN ) -> 0 <_ ( M x. N ) ) |
| 20 | 2 19 | absidd | |- ( ( M e. NN /\ N e. NN ) -> ( abs ` ( M x. N ) ) = ( M x. N ) ) |
| 21 | 3 6 | anim12i | |- ( ( M e. NN /\ N e. NN ) -> ( M e. ZZ /\ N e. ZZ ) ) |
| 22 | nnne0 | |- ( M e. NN -> M =/= 0 ) |
|
| 23 | 22 | neneqd | |- ( M e. NN -> -. M = 0 ) |
| 24 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 25 | 24 | neneqd | |- ( N e. NN -> -. N = 0 ) |
| 26 | 23 25 | anim12i | |- ( ( M e. NN /\ N e. NN ) -> ( -. M = 0 /\ -. N = 0 ) ) |
| 27 | ioran | |- ( -. ( M = 0 \/ N = 0 ) <-> ( -. M = 0 /\ -. N = 0 ) ) |
|
| 28 | 26 27 | sylibr | |- ( ( M e. NN /\ N e. NN ) -> -. ( M = 0 \/ N = 0 ) ) |
| 29 | lcmn0val | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = inf ( { x e. NN | ( M || x /\ N || x ) } , RR , < ) ) |
|
| 30 | 21 28 29 | syl2anc | |- ( ( M e. NN /\ N e. NN ) -> ( M lcm N ) = inf ( { x e. NN | ( M || x /\ N || x ) } , RR , < ) ) |
| 31 | ltso | |- < Or RR |
|
| 32 | 31 | a1i | |- ( ( M e. NN /\ N e. NN ) -> < Or RR ) |
| 33 | gcddvds | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
|
| 34 | 33 | simpld | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) |
| 35 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
| 36 | 35 | nn0zd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) |
| 37 | dvdsmultr1 | |- ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M -> ( M gcd N ) || ( M x. N ) ) ) |
|
| 38 | 37 | 3expb | |- ( ( ( M gcd N ) e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( M gcd N ) || M -> ( M gcd N ) || ( M x. N ) ) ) |
| 39 | 36 38 | mpancom | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M -> ( M gcd N ) || ( M x. N ) ) ) |
| 40 | 34 39 | mpd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || ( M x. N ) ) |
| 41 | 21 40 | syl | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) || ( M x. N ) ) |
| 42 | gcdnncl | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. NN ) |
|
| 43 | nndivdvds | |- ( ( ( M x. N ) e. NN /\ ( M gcd N ) e. NN ) -> ( ( M gcd N ) || ( M x. N ) <-> ( ( M x. N ) / ( M gcd N ) ) e. NN ) ) |
|
| 44 | 1 42 43 | syl2anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || ( M x. N ) <-> ( ( M x. N ) / ( M gcd N ) ) e. NN ) ) |
| 45 | 41 44 | mpbid | |- ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) e. NN ) |
| 46 | 45 | nnred | |- ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) e. RR ) |
| 47 | breq2 | |- ( x = ( ( M x. N ) / ( M gcd N ) ) -> ( M || x <-> M || ( ( M x. N ) / ( M gcd N ) ) ) ) |
|
| 48 | breq2 | |- ( x = ( ( M x. N ) / ( M gcd N ) ) -> ( N || x <-> N || ( ( M x. N ) / ( M gcd N ) ) ) ) |
|
| 49 | 47 48 | anbi12d | |- ( x = ( ( M x. N ) / ( M gcd N ) ) -> ( ( M || x /\ N || x ) <-> ( M || ( ( M x. N ) / ( M gcd N ) ) /\ N || ( ( M x. N ) / ( M gcd N ) ) ) ) ) |
| 50 | 33 | simprd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || N ) |
| 51 | 21 50 | syl | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) || N ) |
| 52 | 21 36 | syl | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. ZZ ) |
| 53 | 42 | nnne0d | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) =/= 0 ) |
| 54 | dvdsval2 | |- ( ( ( M gcd N ) e. ZZ /\ ( M gcd N ) =/= 0 /\ N e. ZZ ) -> ( ( M gcd N ) || N <-> ( N / ( M gcd N ) ) e. ZZ ) ) |
|
| 55 | 52 53 7 54 | syl3anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || N <-> ( N / ( M gcd N ) ) e. ZZ ) ) |
| 56 | 51 55 | mpbid | |- ( ( M e. NN /\ N e. NN ) -> ( N / ( M gcd N ) ) e. ZZ ) |
| 57 | dvdsmul1 | |- ( ( M e. ZZ /\ ( N / ( M gcd N ) ) e. ZZ ) -> M || ( M x. ( N / ( M gcd N ) ) ) ) |
|
| 58 | 4 56 57 | syl2anc | |- ( ( M e. NN /\ N e. NN ) -> M || ( M x. ( N / ( M gcd N ) ) ) ) |
| 59 | nncn | |- ( M e. NN -> M e. CC ) |
|
| 60 | 59 | adantr | |- ( ( M e. NN /\ N e. NN ) -> M e. CC ) |
| 61 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 62 | 61 | adantl | |- ( ( M e. NN /\ N e. NN ) -> N e. CC ) |
| 63 | 42 | nncnd | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. CC ) |
| 64 | 60 62 63 53 | divassd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) = ( M x. ( N / ( M gcd N ) ) ) ) |
| 65 | 58 64 | breqtrrd | |- ( ( M e. NN /\ N e. NN ) -> M || ( ( M x. N ) / ( M gcd N ) ) ) |
| 66 | 21 34 | syl | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) || M ) |
| 67 | dvdsval2 | |- ( ( ( M gcd N ) e. ZZ /\ ( M gcd N ) =/= 0 /\ M e. ZZ ) -> ( ( M gcd N ) || M <-> ( M / ( M gcd N ) ) e. ZZ ) ) |
|
| 68 | 52 53 4 67 | syl3anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || M <-> ( M / ( M gcd N ) ) e. ZZ ) ) |
| 69 | 66 68 | mpbid | |- ( ( M e. NN /\ N e. NN ) -> ( M / ( M gcd N ) ) e. ZZ ) |
| 70 | dvdsmul1 | |- ( ( N e. ZZ /\ ( M / ( M gcd N ) ) e. ZZ ) -> N || ( N x. ( M / ( M gcd N ) ) ) ) |
|
| 71 | 7 69 70 | syl2anc | |- ( ( M e. NN /\ N e. NN ) -> N || ( N x. ( M / ( M gcd N ) ) ) ) |
| 72 | 60 62 | mulcomd | |- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) = ( N x. M ) ) |
| 73 | 72 | oveq1d | |- ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) = ( ( N x. M ) / ( M gcd N ) ) ) |
| 74 | 62 60 63 53 | divassd | |- ( ( M e. NN /\ N e. NN ) -> ( ( N x. M ) / ( M gcd N ) ) = ( N x. ( M / ( M gcd N ) ) ) ) |
| 75 | 73 74 | eqtrd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) = ( N x. ( M / ( M gcd N ) ) ) ) |
| 76 | 71 75 | breqtrrd | |- ( ( M e. NN /\ N e. NN ) -> N || ( ( M x. N ) / ( M gcd N ) ) ) |
| 77 | 65 76 | jca | |- ( ( M e. NN /\ N e. NN ) -> ( M || ( ( M x. N ) / ( M gcd N ) ) /\ N || ( ( M x. N ) / ( M gcd N ) ) ) ) |
| 78 | 49 45 77 | elrabd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) e. { x e. NN | ( M || x /\ N || x ) } ) |
| 79 | 46 | adantr | |- ( ( ( M e. NN /\ N e. NN ) /\ n e. { x e. NN | ( M || x /\ N || x ) } ) -> ( ( M x. N ) / ( M gcd N ) ) e. RR ) |
| 80 | elrabi | |- ( n e. { x e. NN | ( M || x /\ N || x ) } -> n e. NN ) |
|
| 81 | 80 | nnred | |- ( n e. { x e. NN | ( M || x /\ N || x ) } -> n e. RR ) |
| 82 | 81 | adantl | |- ( ( ( M e. NN /\ N e. NN ) /\ n e. { x e. NN | ( M || x /\ N || x ) } ) -> n e. RR ) |
| 83 | breq2 | |- ( x = n -> ( M || x <-> M || n ) ) |
|
| 84 | breq2 | |- ( x = n -> ( N || x <-> N || n ) ) |
|
| 85 | 83 84 | anbi12d | |- ( x = n -> ( ( M || x /\ N || x ) <-> ( M || n /\ N || n ) ) ) |
| 86 | 85 | elrab | |- ( n e. { x e. NN | ( M || x /\ N || x ) } <-> ( n e. NN /\ ( M || n /\ N || n ) ) ) |
| 87 | bezout | |- ( ( M e. ZZ /\ N e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) |
|
| 88 | 21 87 | syl | |- ( ( M e. NN /\ N e. NN ) -> E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) |
| 89 | 88 | adantr | |- ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) |
| 90 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 91 | 90 | ad2antlr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> n e. CC ) |
| 92 | 1 | nncnd | |- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. CC ) |
| 93 | 92 | ad2antrr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M x. N ) e. CC ) |
| 94 | 63 | ad2antrr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M gcd N ) e. CC ) |
| 95 | 60 | ad2antrr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> M e. CC ) |
| 96 | 61 | ad3antlr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N e. CC ) |
| 97 | 22 | ad3antrrr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> M =/= 0 ) |
| 98 | 24 | ad3antlr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N =/= 0 ) |
| 99 | 95 96 97 98 | mulne0d | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M x. N ) =/= 0 ) |
| 100 | 53 | ad2antrr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M gcd N ) =/= 0 ) |
| 101 | 91 93 94 99 100 | divdiv2d | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( n x. ( M gcd N ) ) / ( M x. N ) ) ) |
| 102 | 101 | adantr | |- ( ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( n x. ( M gcd N ) ) / ( M x. N ) ) ) |
| 103 | oveq2 | |- ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( n x. ( M gcd N ) ) = ( n x. ( ( M x. x ) + ( N x. y ) ) ) ) |
|
| 104 | 103 | oveq1d | |- ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( ( n x. ( M gcd N ) ) / ( M x. N ) ) = ( ( n x. ( ( M x. x ) + ( N x. y ) ) ) / ( M x. N ) ) ) |
| 105 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 106 | 105 | ad2antrl | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. CC ) |
| 107 | 95 106 | mulcld | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M x. x ) e. CC ) |
| 108 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 109 | 108 | ad2antll | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. CC ) |
| 110 | 96 109 | mulcld | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N x. y ) e. CC ) |
| 111 | 91 107 110 | adddid | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. ( ( M x. x ) + ( N x. y ) ) ) = ( ( n x. ( M x. x ) ) + ( n x. ( N x. y ) ) ) ) |
| 112 | 111 | oveq1d | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( ( M x. x ) + ( N x. y ) ) ) / ( M x. N ) ) = ( ( ( n x. ( M x. x ) ) + ( n x. ( N x. y ) ) ) / ( M x. N ) ) ) |
| 113 | 91 107 | mulcld | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. ( M x. x ) ) e. CC ) |
| 114 | 91 110 | mulcld | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. ( N x. y ) ) e. CC ) |
| 115 | 113 114 93 99 | divdird | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( n x. ( M x. x ) ) + ( n x. ( N x. y ) ) ) / ( M x. N ) ) = ( ( ( n x. ( M x. x ) ) / ( M x. N ) ) + ( ( n x. ( N x. y ) ) / ( M x. N ) ) ) ) |
| 116 | 112 115 | eqtrd | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( ( M x. x ) + ( N x. y ) ) ) / ( M x. N ) ) = ( ( ( n x. ( M x. x ) ) / ( M x. N ) ) + ( ( n x. ( N x. y ) ) / ( M x. N ) ) ) ) |
| 117 | 104 116 | sylan9eqr | |- ( ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( ( n x. ( M gcd N ) ) / ( M x. N ) ) = ( ( ( n x. ( M x. x ) ) / ( M x. N ) ) + ( ( n x. ( N x. y ) ) / ( M x. N ) ) ) ) |
| 118 | 91 95 106 | mul12d | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. ( M x. x ) ) = ( M x. ( n x. x ) ) ) |
| 119 | 118 | oveq1d | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( M x. x ) ) / ( M x. N ) ) = ( ( M x. ( n x. x ) ) / ( M x. N ) ) ) |
| 120 | 91 106 | mulcld | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. x ) e. CC ) |
| 121 | 120 96 95 98 97 | divcan5d | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M x. ( n x. x ) ) / ( M x. N ) ) = ( ( n x. x ) / N ) ) |
| 122 | 119 121 | eqtrd | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( M x. x ) ) / ( M x. N ) ) = ( ( n x. x ) / N ) ) |
| 123 | 91 96 109 | mul12d | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. ( N x. y ) ) = ( N x. ( n x. y ) ) ) |
| 124 | 123 | oveq1d | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( N x. y ) ) / ( M x. N ) ) = ( ( N x. ( n x. y ) ) / ( M x. N ) ) ) |
| 125 | 72 | ad2antrr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M x. N ) = ( N x. M ) ) |
| 126 | 125 | oveq2d | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N x. ( n x. y ) ) / ( M x. N ) ) = ( ( N x. ( n x. y ) ) / ( N x. M ) ) ) |
| 127 | 91 109 | mulcld | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. y ) e. CC ) |
| 128 | 127 95 96 97 98 | divcan5d | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N x. ( n x. y ) ) / ( N x. M ) ) = ( ( n x. y ) / M ) ) |
| 129 | 124 126 128 | 3eqtrd | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( N x. y ) ) / ( M x. N ) ) = ( ( n x. y ) / M ) ) |
| 130 | 122 129 | oveq12d | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( n x. ( M x. x ) ) / ( M x. N ) ) + ( ( n x. ( N x. y ) ) / ( M x. N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) |
| 131 | 130 | adantr | |- ( ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( ( ( n x. ( M x. x ) ) / ( M x. N ) ) + ( ( n x. ( N x. y ) ) / ( M x. N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) |
| 132 | 102 117 131 | 3eqtrd | |- ( ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) |
| 133 | 132 | ex | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) ) |
| 134 | 133 | adantlrr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) ) |
| 135 | 134 | imp | |- ( ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) |
| 136 | 6 | ad3antlr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N e. ZZ ) |
| 137 | nnz | |- ( n e. NN -> n e. ZZ ) |
|
| 138 | 137 | ad2antlr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> n e. ZZ ) |
| 139 | simprl | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
|
| 140 | dvdsmultr1 | |- ( ( N e. ZZ /\ n e. ZZ /\ x e. ZZ ) -> ( N || n -> N || ( n x. x ) ) ) |
|
| 141 | 136 138 139 140 | syl3anc | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N || n -> N || ( n x. x ) ) ) |
| 142 | 138 139 | zmulcld | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. x ) e. ZZ ) |
| 143 | dvdsval2 | |- ( ( N e. ZZ /\ N =/= 0 /\ ( n x. x ) e. ZZ ) -> ( N || ( n x. x ) <-> ( ( n x. x ) / N ) e. ZZ ) ) |
|
| 144 | 136 98 142 143 | syl3anc | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N || ( n x. x ) <-> ( ( n x. x ) / N ) e. ZZ ) ) |
| 145 | 141 144 | sylibd | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N || n -> ( ( n x. x ) / N ) e. ZZ ) ) |
| 146 | 145 | adantld | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M || n /\ N || n ) -> ( ( n x. x ) / N ) e. ZZ ) ) |
| 147 | 146 | 3impia | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) /\ ( M || n /\ N || n ) ) -> ( ( n x. x ) / N ) e. ZZ ) |
| 148 | 3 | ad3antrrr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> M e. ZZ ) |
| 149 | simprr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
|
| 150 | dvdsmultr1 | |- ( ( M e. ZZ /\ n e. ZZ /\ y e. ZZ ) -> ( M || n -> M || ( n x. y ) ) ) |
|
| 151 | 148 138 149 150 | syl3anc | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M || n -> M || ( n x. y ) ) ) |
| 152 | 138 149 | zmulcld | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. y ) e. ZZ ) |
| 153 | dvdsval2 | |- ( ( M e. ZZ /\ M =/= 0 /\ ( n x. y ) e. ZZ ) -> ( M || ( n x. y ) <-> ( ( n x. y ) / M ) e. ZZ ) ) |
|
| 154 | 148 97 152 153 | syl3anc | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M || ( n x. y ) <-> ( ( n x. y ) / M ) e. ZZ ) ) |
| 155 | 151 154 | sylibd | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M || n -> ( ( n x. y ) / M ) e. ZZ ) ) |
| 156 | 155 | adantrd | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M || n /\ N || n ) -> ( ( n x. y ) / M ) e. ZZ ) ) |
| 157 | 156 | 3impia | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) /\ ( M || n /\ N || n ) ) -> ( ( n x. y ) / M ) e. ZZ ) |
| 158 | 147 157 | zaddcld | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) /\ ( M || n /\ N || n ) ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) |
| 159 | 158 | 3expia | |- ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M || n /\ N || n ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) ) |
| 160 | 159 | an32s | |- ( ( ( ( M e. NN /\ N e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ n e. NN ) -> ( ( M || n /\ N || n ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) ) |
| 161 | 160 | impr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) |
| 162 | 161 | an32s | |- ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) |
| 163 | 162 | adantr | |- ( ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) |
| 164 | 135 163 | eqeltrd | |- ( ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) e. ZZ ) |
| 165 | 45 | nnzd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) e. ZZ ) |
| 166 | 165 | ad2antrr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M x. N ) / ( M gcd N ) ) e. ZZ ) |
| 167 | 1 | nnne0d | |- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) =/= 0 ) |
| 168 | 92 63 167 53 | divne0d | |- ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) =/= 0 ) |
| 169 | 168 | ad2antrr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M x. N ) / ( M gcd N ) ) =/= 0 ) |
| 170 | 138 | adantlrr | |- ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> n e. ZZ ) |
| 171 | dvdsval2 | |- ( ( ( ( M x. N ) / ( M gcd N ) ) e. ZZ /\ ( ( M x. N ) / ( M gcd N ) ) =/= 0 /\ n e. ZZ ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> ( n / ( ( M x. N ) / ( M gcd N ) ) ) e. ZZ ) ) |
|
| 172 | 166 169 170 171 | syl3anc | |- ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> ( n / ( ( M x. N ) / ( M gcd N ) ) ) e. ZZ ) ) |
| 173 | 172 | adantr | |- ( ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> ( n / ( ( M x. N ) / ( M gcd N ) ) ) e. ZZ ) ) |
| 174 | 164 173 | mpbird | |- ( ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( ( M x. N ) / ( M gcd N ) ) || n ) |
| 175 | 174 | ex | |- ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( ( M x. N ) / ( M gcd N ) ) || n ) ) |
| 176 | 175 | reximdvva | |- ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> E. x e. ZZ E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) ) |
| 177 | 89 176 | mpd | |- ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> E. x e. ZZ E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) |
| 178 | 1z | |- 1 e. ZZ |
|
| 179 | ne0i | |- ( 1 e. ZZ -> ZZ =/= (/) ) |
|
| 180 | r19.9rzv | |- ( ZZ =/= (/) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) ) |
|
| 181 | 178 179 180 | mp2b | |- ( ( ( M x. N ) / ( M gcd N ) ) || n <-> E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) |
| 182 | r19.9rzv | |- ( ZZ =/= (/) -> ( E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n <-> E. x e. ZZ E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) ) |
|
| 183 | 178 179 182 | mp2b | |- ( E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n <-> E. x e. ZZ E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) |
| 184 | 181 183 | bitri | |- ( ( ( M x. N ) / ( M gcd N ) ) || n <-> E. x e. ZZ E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) |
| 185 | 177 184 | sylibr | |- ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( M x. N ) / ( M gcd N ) ) || n ) |
| 186 | 165 | adantr | |- ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( M x. N ) / ( M gcd N ) ) e. ZZ ) |
| 187 | simprl | |- ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> n e. NN ) |
|
| 188 | dvdsle | |- ( ( ( ( M x. N ) / ( M gcd N ) ) e. ZZ /\ n e. NN ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n -> ( ( M x. N ) / ( M gcd N ) ) <_ n ) ) |
|
| 189 | 186 187 188 | syl2anc | |- ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n -> ( ( M x. N ) / ( M gcd N ) ) <_ n ) ) |
| 190 | 185 189 | mpd | |- ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( M x. N ) / ( M gcd N ) ) <_ n ) |
| 191 | 86 190 | sylan2b | |- ( ( ( M e. NN /\ N e. NN ) /\ n e. { x e. NN | ( M || x /\ N || x ) } ) -> ( ( M x. N ) / ( M gcd N ) ) <_ n ) |
| 192 | 79 82 191 | lensymd | |- ( ( ( M e. NN /\ N e. NN ) /\ n e. { x e. NN | ( M || x /\ N || x ) } ) -> -. n < ( ( M x. N ) / ( M gcd N ) ) ) |
| 193 | 32 46 78 192 | infmin | |- ( ( M e. NN /\ N e. NN ) -> inf ( { x e. NN | ( M || x /\ N || x ) } , RR , < ) = ( ( M x. N ) / ( M gcd N ) ) ) |
| 194 | 30 193 | eqtr2d | |- ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) = ( M lcm N ) ) |
| 195 | 194 45 | eqeltrrd | |- ( ( M e. NN /\ N e. NN ) -> ( M lcm N ) e. NN ) |
| 196 | 195 | nncnd | |- ( ( M e. NN /\ N e. NN ) -> ( M lcm N ) e. CC ) |
| 197 | 92 196 63 53 | divmul3d | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M x. N ) / ( M gcd N ) ) = ( M lcm N ) <-> ( M x. N ) = ( ( M lcm N ) x. ( M gcd N ) ) ) ) |
| 198 | 194 197 | mpbid | |- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) = ( ( M lcm N ) x. ( M gcd N ) ) ) |
| 199 | 20 198 | eqtr2d | |- ( ( M e. NN /\ N e. NN ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) |
| 200 | simprl | |- ( ( ( M e. NN /\ N e. NN ) /\ ( K e. NN /\ ( M || K /\ N || K ) ) ) -> K e. NN ) |
|
| 201 | eleq1 | |- ( n = K -> ( n e. NN <-> K e. NN ) ) |
|
| 202 | breq2 | |- ( n = K -> ( M || n <-> M || K ) ) |
|
| 203 | breq2 | |- ( n = K -> ( N || n <-> N || K ) ) |
|
| 204 | 202 203 | anbi12d | |- ( n = K -> ( ( M || n /\ N || n ) <-> ( M || K /\ N || K ) ) ) |
| 205 | 201 204 | anbi12d | |- ( n = K -> ( ( n e. NN /\ ( M || n /\ N || n ) ) <-> ( K e. NN /\ ( M || K /\ N || K ) ) ) ) |
| 206 | 205 | anbi2d | |- ( n = K -> ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) <-> ( ( M e. NN /\ N e. NN ) /\ ( K e. NN /\ ( M || K /\ N || K ) ) ) ) ) |
| 207 | breq2 | |- ( n = K -> ( ( M lcm N ) || n <-> ( M lcm N ) || K ) ) |
|
| 208 | 206 207 | imbi12d | |- ( n = K -> ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( M lcm N ) || n ) <-> ( ( ( M e. NN /\ N e. NN ) /\ ( K e. NN /\ ( M || K /\ N || K ) ) ) -> ( M lcm N ) || K ) ) ) |
| 209 | 194 | breq1d | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> ( M lcm N ) || n ) ) |
| 210 | 209 | adantr | |- ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> ( M lcm N ) || n ) ) |
| 211 | 185 210 | mpbid | |- ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( M lcm N ) || n ) |
| 212 | 208 211 | vtoclg | |- ( K e. NN -> ( ( ( M e. NN /\ N e. NN ) /\ ( K e. NN /\ ( M || K /\ N || K ) ) ) -> ( M lcm N ) || K ) ) |
| 213 | 200 212 | mpcom | |- ( ( ( M e. NN /\ N e. NN ) /\ ( K e. NN /\ ( M || K /\ N || K ) ) ) -> ( M lcm N ) || K ) |
| 214 | 213 | ex | |- ( ( M e. NN /\ N e. NN ) -> ( ( K e. NN /\ ( M || K /\ N || K ) ) -> ( M lcm N ) || K ) ) |
| 215 | 199 214 | jca | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) /\ ( ( K e. NN /\ ( M || K /\ N || K ) ) -> ( M lcm N ) || K ) ) ) |