This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strong form of dvdsval2 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndivdvds | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ∥ 𝐴 ↔ ( 𝐴 / 𝐵 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 2 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
| 3 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 5 | dvdsval2 | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( 𝐵 ∥ 𝐴 ↔ ( 𝐴 / 𝐵 ) ∈ ℤ ) ) | |
| 6 | 1 2 4 5 | syl2an23an | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ∥ 𝐴 ↔ ( 𝐴 / 𝐵 ) ∈ ℤ ) ) |
| 7 | 6 | anbi1d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐵 ∥ 𝐴 ∧ 0 < ( 𝐴 / 𝐵 ) ) ↔ ( ( 𝐴 / 𝐵 ) ∈ ℤ ∧ 0 < ( 𝐴 / 𝐵 ) ) ) ) |
| 8 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 10 | nnre | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 12 | nngt0 | ⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 0 < 𝐴 ) |
| 14 | nngt0 | ⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 0 < 𝐵 ) |
| 16 | 9 11 13 15 | divgt0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 0 < ( 𝐴 / 𝐵 ) ) |
| 17 | 16 | biantrud | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ∥ 𝐴 ↔ ( 𝐵 ∥ 𝐴 ∧ 0 < ( 𝐴 / 𝐵 ) ) ) ) |
| 18 | elnnz | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℕ ↔ ( ( 𝐴 / 𝐵 ) ∈ ℤ ∧ 0 < ( 𝐴 / 𝐵 ) ) ) | |
| 19 | 18 | a1i | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) ∈ ℕ ↔ ( ( 𝐴 / 𝐵 ) ∈ ℤ ∧ 0 < ( 𝐴 / 𝐵 ) ) ) ) |
| 20 | 7 17 19 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ∥ 𝐴 ↔ ( 𝐴 / 𝐵 ) ∈ ℕ ) ) |